# Interferometric Computation Beyond Quantum Theory

- 17 Downloads

**Part of the following topical collections:**

## Abstract

There are quantum solutions for computational problems that make use of *interference* at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that *quaternionic quantum theory* proves a suitable candidate, whereas *box-world* does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.

## Keywords

Post-quantum computation Interference Deutsch–Jozsa algorithm Generalized probabilistic theories Mach–Zehnder interferometer Spekkens’ toy model## Notes

### Acknowledgements

The author is very grateful for illuminating discussions and correspondence with Felix Binder, Oscar Dahlsten, Daniela Frauchiger, Nana Liu, Markus Müller, Vlatko Vedral, and Benjamin Yadin. The author is grateful for financial support from the John Templeton Foundation and the Foundational Questions Institute. This research was undertaken whilst the author was funded by the Engineering and Physical Sciences Research Council (UK) at the University of Oxford. Some of concepts in this article have also appeared as part of the author’s DPhil thesis [31].

## References

- 1.Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. A
**400**(1818), 97–117 (1985)ADSMathSciNetCrossRefMATHGoogle Scholar - 2.Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A.
**439**(1907), 553–558 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar - 3.Simon, D.R.: On the power of quantum computation. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 116–123 (1994)Google Scholar
- 4.Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC’96, pp. 212–219, New York, NY. ACM (1996)Google Scholar
- 5.Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput.
**26**(5), 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar - 6.Cleve, R., Ekert, A.K., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A.
**454**(1969), 339–354 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar - 7.Lloyd, S.: Quantum search without entanglement. Phys. Rev. A
**61**(1), 010301 (1999)MathSciNetCrossRefGoogle Scholar - 8.Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys.
**29**(4), 631–643 (1999)MathSciNetCrossRefGoogle Scholar - 9.Hardy, L.: Quantum Theory from Five Reasonable Axioms (2001)Google Scholar
- 10.Fuchs, C.: Quantum Foundations in the Light of Quantum Information (2001). arXiv:quant-ph/0106166v1
- 11.Masanes, Ll, Müller, M.P.: A derivation of quantum theory from physical requirements. New J. Phys.
**13**(6), 63001 (2011)CrossRefGoogle Scholar - 12.Chiribella, G., DAriano, G.M., Perinotti, P.: Quantum theory, namely the pure and reversible theory of information. Entropy
**14**(12), 1877–1893 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar - 13.Barnum, H., Müller, M.P., Ududec, C.: Higher-order interference and single-system postulates characterizing quantum theory. New J. Phys.
**16**(12), 123029 (2014)ADSCrossRefGoogle Scholar - 14.Clauser, J., Horne, M., Shimony, A., Holt, R.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.
**23**(15), 880–884 (1969)ADSCrossRefMATHGoogle Scholar - 15.Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys.
**4**(2), 93–100 (1980)ADSMathSciNetCrossRefGoogle Scholar - 16.Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadron. J. Suppl.
**8**, 329–345 (1993)MathSciNetMATHGoogle Scholar - 17.Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys.
**24**(3), 379–385 (1994)ADSMathSciNetCrossRefGoogle Scholar - 18.Popescu, S.: Nonlocality beyond quantum mechanics. Nat. Phys.
**10**(4), 264–270 (2014)CrossRefGoogle Scholar - 19.van Dam, W.: Nonlocality & Communication Complexity. DPhil thesis, University of Oxford (2000)Google Scholar
- 20.Cleve, R., van Dam, W., Nielsen, M., Tapp, A.: Quantum entanglement and the communication complexity of the inner product function. Theor. Comput. Sci.
**486**, 11–19 (2013)MathSciNetCrossRefMATHGoogle Scholar - 21.Fernandez, J.M., Schneeberger, W.A.: Quaternionic computing (2003). arXiv:quant-ph/0307017
- 22.Lee, C.M., Barrett, J.: Computation in generalised probabilistic theories. New J. Phys.
**17**, 083001 (2015)ADSMathSciNetCrossRefGoogle Scholar - 23.Lee, C.M., Hoban, M.J.: Bounds on the power of proofs and advice in general physical theories. Proc. R. Soc. A
**472**(2190), 20160076 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar - 24.Lee, C.M., Selby, J.H.: Generalised phase kick-back: the structure of computational algorithms from physical principles. New J. Phys.
**18**, 033023 (2016)ADSCrossRefGoogle Scholar - 25.Lee, C.M., Selby, J.H.: Deriving Grover’s lower bound from simple physical principles. New J. Phys.
**18**, 093047 (2016)ADSCrossRefGoogle Scholar - 26.Sorkin, R.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A
**9**, 3119 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar - 27.Ududec, C., Barnum, H., Emerson, J.: Three slit experiments and the structure of quantum theory. Found. Phys.
**41**(3), 396–405 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar - 28.Ududec, C.: Perspectives on the Formalism of Quantum Theory. PhD thesis, University of Waterloo (2012)Google Scholar
- 29.Garner, A.J.P., Dahlsten, O.C.O., Nakata, Y., Murao, M., Vedral, V.: A framework for phase and interference in generalized probabilistic theories. New J. Phys.
**15**(9), 093044 (2013)ADSMathSciNetCrossRefGoogle Scholar - 30.Dahlsten, O.C.O., Garner, A.J.P., Vedral, V.: The uncertainty principle enables non-classical dynamics in an interferometer. Nat. Commun.
**5**, 4592 (2014)ADSCrossRefGoogle Scholar - 31.Garner, A.J.P.: Phase and interference phenomena in generalized probabilistic theories. DPhil thesis, University of Oxford, Hilary Term (2015)Google Scholar
- 32.Spekkens, R.W.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A
**75**(3), 32110 (2007)ADSCrossRefGoogle Scholar - 33.Spekkens, R.W.: Quasi-quantization: classical statistical theories with an epistemic restriction. Quantum Theory, pp. 83–135 (2015)Google Scholar
- 34.Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A
**75**(3), 32304 (2007)ADSCrossRefGoogle Scholar - 35.Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
- 36.Schrödinger, E.: Zum Heisenbergschen Unschärfeprinzip. S. B. Preuß. Akad. Wiss., Physikalisch-mathematische Klasse
**14**, 296–303 (1930)MATHGoogle Scholar - 37.Robertson, H.P.: The uncertainty principle. Phys. Rev.
**34**(1), 163–164 (1929)ADSCrossRefGoogle Scholar - 38.van Enk, S.J.: A toy model for quantum mechanics. Found. Phys.
**37**(10), 1447–1460 (2007)ADSMathSciNetCrossRefGoogle Scholar - 39.Janotta, P., Lal, R.: Generalized probabilistic theories without the no-restriction hypothesis. Phys. Rev. A
**87**(5), 052131 (2013)ADSCrossRefGoogle Scholar - 40.Pusey, Matthew F.: Stabilizer notation for Spekkens’ toy theory. Found. Phys.
**42**(5), 688–708 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar - 41.Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev.
**115**(3), 485–491 (1959)ADSMathSciNetCrossRefMATHGoogle Scholar - 42.Gross, D., Müller, M., Colbeck, R., Dahlsten, O.C.O.: All reversible dynamics in maximally nonlocal theories are trivial. Phys. Rev. Lett.
**104**(8), 80402 (2010)ADSCrossRefGoogle Scholar - 43.Dakic, B., Brukner, C.: The classical limit of a physical theory and the dimensionality of space (2013)Google Scholar
- 44.Müller, M.P., Masanes, Ll: Three-dimensionality of space and the quantum bit: an information-theoretic approach. New J. Phys.
**15**(5), 053040 (2013)MathSciNetCrossRefGoogle Scholar - 45.Garner, A.J.P., Müller, M.P., Dahlsten, O.C.O.: The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer. Proc. R. Soc. A
**473**(2208), 20170596 (2017). https://doi.org/10.1098/rspa.2017.0596 - 46.Alfsen, E.M., Shultz, F.W.: Geometry of State Spaces of Operator Algebras. Birkhäuser, Boston (2003)CrossRefMATHGoogle Scholar
- 47.Dickson, L.E.: On quaternions and their generalization and the history of the eight square theorem. Ann. Math. Second Series
**20**(3), 155–171 (1919)MathSciNetCrossRefMATHGoogle Scholar - 48.Graydon, M.A.: Quaternions and quantum theory. Master’s thesis, University of Waterloo (2011)Google Scholar
- 49.Baez, J.C.: Symplectic, Quaternionic, Fermionic (2014). http://www.math.ucr.edu/home/baez/symplectic.html
- 50.Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev.
**85**(2), 166–179 (1952a)ADSMathSciNetCrossRefMATHGoogle Scholar - 51.Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev.
**85**(2), 180–193 (1952b)ADSMathSciNetCrossRefMATHGoogle Scholar - 52.Norsen, Travis: The pilot-wave perspective on spin. Am. J. Phys.
**82**(4), 337–348 (2014)ADSCrossRefGoogle Scholar