Abstract
Atiyah and Sutcliffe (Proc R Soc Lond Ser A 458:1089–1115, 2002) made a number of conjectures about configurations of N distinct points in hyperbolic 3-space, arising from ideas of Berry and Robbins (Proc R Soc Lond Ser A 453:1771–1790, 1997). In this paper we prove all these conjectures, purely geometrically, but we also provide a physical interpretation in terms of Electrons.
This is a preview of subscription content, access via your institution.
References
Atiyah, M.F.: Geometric models of Helium. Mod. Phys. Lett. A 32(14), 1750079 (2017). 11 pp
Atiyah, M.F.: Configurations of points. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359, 1375–1387 (2001)
Atiyah, M.F.: Scalar curvature, flat Borromean rings and the 3-body problem. Proc. R. Soc. Edinb. (2018) (to appear)
Atiyah, M.F., Berndt, J.: The Kervaire invariant and the magic square I. J. Topol. (submitted)
Atiyah, M.F., Manton, N.S.: Complex Geometry of Nuclei and Atoms. Volume dedicated to C.N. Yang (to appear)
Atiyah, M.F., Sutcliffe, P.M.: The geometry of point particles, Proc. R. Soc. Lond. Ser. A 458, 1089–1115 (2002). arXiv:hep-th/0105179
Atiyah, M.F., Sutcliffe, P.M.: Polyhedra in physics, chemistry and geometry. Milan J. Math. 71, 33–58 (2003)
Berry, M.V., Robbins, J.M.: Indistinguishability for quantum particles: spin, statistics and the geometric phase. Proc. R. Soc. Lond. Ser. A 453, 1771–1790 (1997)
Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. With a Foreword by Tim Maudlin. Springer, Heidelberg (2013). xviii+284 pp. ISBN: 978-3-642-30689-1; 978-3-642-30690-7
Gibbons, G.W., Rychenkova, P., Goto, R.: Hyper-Kähler quotient construction of BPS monopole moduli spaces. Commun. Math. Phys. 186(3), 581–599 (1997)
Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117(3), 353–386 (1988)
Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)
Acknowledgements
We thank Paul Sutcliffe and Wafic Sabra for some helpful comments related to dimensional analysis. Of course, Paul Sutcliffe was a key collaborator in the formulation of the Atiyah–Sutcliffe conjectures. The support of the Leverhulme Foundation is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Atiyah, M.F., Malkoun, J. The Relativistic Geometry and Dynamics of Electrons. Found Phys 48, 199–208 (2018). https://doi.org/10.1007/s10701-018-0139-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10701-018-0139-2