Skip to main content

The Relativistic Geometry and Dynamics of Electrons

Abstract

Atiyah and Sutcliffe (Proc R Soc Lond Ser A 458:1089–1115, 2002) made a number of conjectures about configurations of N distinct points in hyperbolic 3-space, arising from ideas of Berry and Robbins (Proc R Soc Lond Ser A 453:1771–1790, 1997). In this paper we prove all these conjectures, purely geometrically, but we also provide a physical interpretation in terms of Electrons.

This is a preview of subscription content, access via your institution.

References

  1. Atiyah, M.F.: Geometric models of Helium. Mod. Phys. Lett. A 32(14), 1750079 (2017). 11 pp

    Article  ADS  MathSciNet  Google Scholar 

  2. Atiyah, M.F.: Configurations of points. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359, 1375–1387 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F.: Scalar curvature, flat Borromean rings and the 3-body problem. Proc. R. Soc. Edinb. (2018) (to appear)

  4. Atiyah, M.F., Berndt, J.: The Kervaire invariant and the magic square I. J. Topol. (submitted)

  5. Atiyah, M.F., Manton, N.S.: Complex Geometry of Nuclei and Atoms. Volume dedicated to C.N. Yang (to appear)

  6. Atiyah, M.F., Sutcliffe, P.M.: The geometry of point particles, Proc. R. Soc. Lond. Ser. A 458, 1089–1115 (2002). arXiv:hep-th/0105179

  7. Atiyah, M.F., Sutcliffe, P.M.: Polyhedra in physics, chemistry and geometry. Milan J. Math. 71, 33–58 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berry, M.V., Robbins, J.M.: Indistinguishability for quantum particles: spin, statistics and the geometric phase. Proc. R. Soc. Lond. Ser. A 453, 1771–1790 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. With a Foreword by Tim Maudlin. Springer, Heidelberg (2013). xviii+284 pp. ISBN: 978-3-642-30689-1; 978-3-642-30690-7

  10. Gibbons, G.W., Rychenkova, P., Goto, R.: Hyper-Kähler quotient construction of BPS monopole moduli spaces. Commun. Math. Phys. 186(3), 581–599 (1997)

    Article  ADS  MATH  Google Scholar 

  11. Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117(3), 353–386 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Paul Sutcliffe and Wafic Sabra for some helpful comments related to dimensional analysis. Of course, Paul Sutcliffe was a key collaborator in the formulation of the Atiyah–Sutcliffe conjectures. The support of the Leverhulme Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Malkoun.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atiyah, M.F., Malkoun, J. The Relativistic Geometry and Dynamics of Electrons. Found Phys 48, 199–208 (2018). https://doi.org/10.1007/s10701-018-0139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0139-2

Keywords