Kent, A.: Unconditionally secure bit commitment. Phys. Rev. Lett. 83, 1447–1450 (1999)
ADS
MathSciNet
Article
Google Scholar
Kent, A.: Unconditionally secure bit commitment by transmitting measurement outcomes. Phys. Rev. Lett. 109, 130501 (2012)
ADS
Article
Google Scholar
Kaniewski, J., Tomamichel, M., Hanggi, E., Wehner, S.: Secure bit commitment from relativistic constraints. Inf. Theory IEEE Trans. 59, 4687–4699 (2012)
MathSciNet
Article
MATH
Google Scholar
Lunghi, T., Kaniewski, J., Bussières, F., Houlmann, R., Tomamichel, M., Kent, A., Gisin, N., Wehner, S., Zbinden, H.: Experimental bit commitment based on quantum communication and special relativity. Phys. Rev. Lett. 111, 180504 (2013)
ADS
Article
Google Scholar
Lunghi, T., et al.: Practical relativistic bit commitment. Phys. Rev. Lett. 115, 030502 (2015)
ADS
Article
Google Scholar
Verbanis, E., Martin, A., Houlmann, R., Boso, G., Bussières, F., Zbinden, H.: 24-Hour relativistic bit commitment. Phys. Rev. Lett. 117, 140506 (2016)
ADS
Article
Google Scholar
Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)
ADS
Article
Google Scholar
Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)
ADS
Article
Google Scholar
D’Ariano, G.M., Perinotti, P., Schlingemann, D.M., Werner, R.F.: A short impossibility proof of quantum bit commitment. Phys. Lett. A 377, 1076–1087 (2013)
ADS
MathSciNet
Article
MATH
Google Scholar
Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the einstein-podolsky-rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)
ADS
MathSciNet
Article
MATH
Google Scholar
Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183, 14–18 (1993)
ADS
MathSciNet
Article
Google Scholar
Disilvestro, L., Markham, D.: Quantum protocols within Spekkens’ toy model. Phys. Rev. A 95, 052324 (2017)
ADS
Article
Google Scholar
Spekkens, R.W.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75, 032110 (2007)
ADS
Article
Google Scholar
He, G.-P.: Security bound of cheat sensitive quantum bit commitment. Sci. Rep. 5, 9398 (2015)
ADS
Article
Google Scholar
He, G.-P.: Quantum key distribution based on orthogonal states allows secure quantum bit commitment. J. Phys. A 44, 445305 (2011)
ADS
MathSciNet
Article
MATH
Google Scholar
He, G.-P.: Simplified quantum bit commitment using single photon nonlocality. Quantum. Inf. Process. 13, 2195 (2014)
ADS
MathSciNet
Article
Google Scholar
He, G.-P.: Unconditionally secure quantum bit commitment using infinite-dimensional systems. arXiv:1709.01396
Yuen, H.P.: An unconditionally secure quantum bit commitment protocol (2012). arXiv:1212.0938
Yuen, H.P.: Impossibility proofs and quantum bit commitment (2008)
Cheung, C.-Y.: Quantum bit commitment using wheeler’s delayed choice experiment. arXiv:1504.05551
Song, Ya-Q., Yang, L.: Quantum bit commitment protocol based on counterfactual quantum cryptography. arXiv:1709.08490
Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2009)
MATH
Google Scholar
Kent, A.: Impossibility of unconditionally secure commitment of a certified classical bit. Phys. Rev. A 61, 042301 (2000)
ADS
MathSciNet
Article
Google Scholar
Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels and the cost of randomizing quantum information. arXiv:quant-ph/0003101
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984)
Cheung, C.-Y.: Secret parameters in quantum bit commitment (2005). arXiv:quant-ph/0508180
Cheung, C.-Y.: Insecurity of quantum bit commitment with secret parameters (2006). arXiv:quant-ph/0601206
Ishizaka, S., Hiroshima, T.: Asymptotic teleportation scheme as a universal programmable quantum processor. Phys. Rev. Lett. 101, 240501 (2008)
ADS
Article
Google Scholar
Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79, 042306 (2009)
ADS
Article
Google Scholar
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)
ADS
Article
MATH
Google Scholar
Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing spooky action at a distance. Nature 454, 861–864 (2008)
ADS
Article
Google Scholar
Hensen, B., et al.: Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)
ADS
Article
Google Scholar
Suarez, A.: Is there a time ordering behind nonlocal correlations? arXiv:quant-ph/0110124
Aravinda, S., Srikanth, R.: Extending quantum mechanics entails extending special relativity. J. Phys. A 49, 205302 (2016)
ADS
MathSciNet
Article
MATH
Google Scholar
Petting zoo (2016). https://complexityzoo.uwaterloo.ca/Petting_Zoo
Leifer, M.S.: Is the quantum state real? an extended review of \(\psi \)-ontology theorems. Quanta 3, 67–155 (2014)
Article
Google Scholar
Barrett, J.: Implications of teleportation for nonlocality. Phys. Rev. A 64, 042305 (2001)
ADS
MathSciNet
Article
Google Scholar
Price, H.: Does time-symmetry imply retrocausality? how the quantum world says ‘maybe’? Stud. Hist. Phil. Sci. B 43, 75–83 (2012)
MathSciNet
MATH
Google Scholar
Werbos, P.J., Dolmatova, L.: Analog quantum computing (aqc) and the need for time-symmetric physics. Q. Inf. Proc. 15, 1273–1287 (2016)
MathSciNet
Article
MATH
Google Scholar
Leifer, Matthew S., Pusey, Matthew F.: Is a time symmetric interpretation of quantum theory possible without retrocausality? Proc. Roy. Soc. Lond. A 473, (2017)
Hellwig, K.E., Kraus, K.: Formal description of measurements in local quantum field theory. Phys. Rev. D 1, 566–571 (1970)
ADS
Article
Google Scholar
Lugo, M.: (2010). https://mathoverflow.net/questions/17202/sum-of-the-first-k-binomial-coefficients-for-fixed-n