Abstract
Despite its age, quantum theory still suffers from serious conceptual difficulties. To create clarity, mathematical physicists have been attempting to formulate quantum theory geometrically and to find a rigorous method of quantization, but this has not resolved the problem. In this article we argue that a quantum theory recursing to quantization algorithms is necessarily incomplete. To provide an alternative approach, we show that the Schrödinger equation is a consequence of three partial differential equations governing the time evolution of a given probability density. These equations, discovered by Madelung, naturally ground the Schrödinger theory in Newtonian mechanics and Kolmogorovian probability theory. A variety of far-reaching consequences for the projection postulate, the correspondence principle, the measurement problem, the uncertainty principle, and the modeling of particle creation and annihilation are immediate. We also give a speculative interpretation of the equations following Bohm, Vigier and Tsekov, by claiming that quantum mechanical behavior is possibly caused by gravitational background noise.
This is a preview of subscription content, access via your institution.

Notes
“In a recent paper Heisenberg puts forward a new theory, which suggests that it is not the equations of classical mechanics that are in any way at fault, but that the mathematical operations by which physical results are deduced from them require modification.” [1]
Here we use the usual notation for vector calculus on \(\mathbb {R}^3\) with standard metric \(\delta \).
“Es besteht somit Aussicht auf dieser Basis die Quantentheorie der Atome zu erledigen.” [28, p. 326]; translation by author: “There is hence a prospect to complete the quantum theory of atoms on this basis.”
For the same reason as in the case of Newtonian spacetimes, it is sensible to assume spacetimes to be also space-oriented.
Physically, a test particle is an almost point-like mass (relatively speaking), whose influence on the spacetime geometry can be neglected in the physical model of consideration.
For a discussion on this interpretation and why alternative ones should be excluded, see e.g. [47, §4.2].
Note that only the \((E<0)\)-solutions are admissible, as the other ones are not \(L^2\)-integrable (c.f. [58, §36]).
Note that this can already not be the case for the momentum operator \(\hat{\vec {p}}\), but can only hold true for its “components” \(\hat{p}_i\).
Usually this is called the Hamiltonian operator, but we take the Hamiltonian to be (3.6g). Considering \(\i \hbar \, \partial /\partial t\) as the energy operator is more natural from the relativistic point of view.
‘\(\Psi _t\) vanishes on \(\partial \Omega _t\)’ means that for any sequence \(({\vec {x}}_n)_{n \in \mathbb {N}}\) in \(\Omega _t\) converging to \({{\vec {x}}} \in \partial \Omega _t \subset \mathbb {R}^3\), we have \(\lim \limits _{n \rightarrow \infty } \Psi _t \left( {{\vec {x}}}_n\right) = 0\).
On a technical note, to assure convergence of (5.2), we also require that the function
$$\begin{aligned} N \rightarrow \mathbb {R}:{{\vec {x}}} \rightarrow \sup _{t \in I} |\left( \frac{\partial \rho }{\partial t} \bigl (t, \vec \Phi _t \left( {{\vec {x}}}\right) \bigr ) + \left( \nabla \cdot \left( \rho {\vec {X}} \right) \right) \bigl (t, \vec \Phi _t \left( {{\vec {x}}}\right) \bigr ) \right) \, \det \biggl ( \biggl (\frac{\partial \vec \Phi _t}{\partial {{\vec {x}}}} \biggr ) \left( {{\vec {x}}} \right) \biggr ) | \end{aligned}$$is bounded and integrable over N. This is trivially true if the continuity equation holds.
It should be noted that there have already been attempts to find a stochastic formulation of the Madelung equations within the so-called theory of ’stochastic mechanics’, developed mainly by Nelson. See e.g. [70] for a review.
This is another instance where the von Neumann approach to probability (see Sect. 4) leads to questionable results: Why should one change the probability theory in the large mass-approximation?
This means that Alice does not observe any gravitational lensing or deviation from straight-line motion of macroscopic, unaccelerated objects.
References
Dirac, P.A.M.: The fundamental equations of quantum mechanics. Philos. R. Soc. A 109(752), 642–653 (1925). doi:10.1098/rspa.1925.0150
Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 33(1), 879–893 (1925). doi:10.1007/BF01328377
Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)
van Hove, L.: Sur certaines représentations unitaires d’un groupe infini de transformations. Mem. de l’Acad. Roy. de Belgique (Classe des Sci.) 26, 61–102 (1951)
Abraham, R.H., Marsden, J.E.: Foundations of Mechanics. Benjamin-Cummings, Reading (1978)
Woodhouse, N.M.J.: Geometric Quantization, 2nd edn. Oxford University Press, New York (1991)
Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N., Victoria-Monge, C.: Mathematical foundations of geometric quantization. Extracta Math. 13(2), 135–238 (1998). arXiv:math-ph/9904008v1
Segal, I.E.: Quantization of nonlinear systems. J. Math. Phys. 1(6), 468–488 (1960). doi:10.1063/1.1703683
Kirillov, A.A.: Unitary representations of nilpotent lie groups. Russ. Math. Surv. 17(4), 53–104 (1962). doi:10.1070/RM1962v017n04ABEH004118
Kostant, B.: Quantization and Unitary Representations, Lectures in Modern Analysis and Applications III. In: Taam, C.T. (ed.) Lecture Notes in Mathematics, pp. 87–208. Springer, Berlin (1970). doi:10.1007/BFb0079068
Souriau, J.-M.: Structure des Systémes Dynamique. Dunod, Paris (1969)
Hall, B.C.: Quantum Theory for Mathematicians. Graduate Texts in Mathematics, vol. 267. Springer, New York (2013)
Kuhn, T.S.: The Structure of Scientific Revolutions, 2nd edn. The University of Chicago Press, Chicago (1970)
Pajares, F.: The structure of scientific revolutions by Thomas S. Kuhn: a synopsis from the original. http://www.uky.edu/~eushe2/Pajares/kuhnsyn.html. Accessed 23 June 2015
Bohr, N.: On the constitution of atoms and molecules. Philos. Mag. 26(151), 1–25 (1913). doi:10.1080/14786441308634955
Sommerfeld, A.: Zur Theorie der Balmerschen Serie, Sitzber. K. Bayer. Akad. 425–500 (1915)
Bohr, N.: Über die Serienspektra der Elemente. Z. Phys. 2(5), 423–469 (1920). doi:10.1007/BF01329978
Heisenberg, W.: Development of Concepts in the History of Quantum Theory. In: Mehra, J. (ed.) The Physicist’s Conception of Nature, pp. 2264–275. D. Reidel Publishing, Dordrecht (1973). doi:10.1007/978-94-010-2602-4.11
Schrödinger, E.: Quantisierung als Eigenwertproblem: Erste Mitteilung. Ann. Phys.-Leipzig 79(6), 361–376 (1926)
von Neumann, J.: Mathematical Foundations of Quantum Mechanics, Investigations in Physics, vol. 2. Princeton University Press, Princeton (1955)
Weinberg, S.: The Quantum Theory of Fields: Foundations, vol. 1. Cambridge University Press, Cambridge (1995)
Woit, P.: Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law, 2nd edn. Basic Books, New York (2007)
Waldmann, S.: Poisson-Geometrie und Deformationsquantisierung. Springer, Dordrecht (2007)
Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9(3) (2006). doi:10.12942/lrr-2006-3. http://www.livingreviews.org/lrr-2006-3
Kriele, M.: Spacetime: Foundations of General Relativity and Differential Geometry, 1st edn. Springer, Berlin (1999)
Schrödinger, E.: Quantisierung als Eigenwertproblem: Zweite Mitteilung. Ann. Phys.-Leipzig 79(6), 489–527 (1926)
Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049–1070 (1926). doi:10.1103/PhysRev.28.1049
Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40(3–4), 322–326 (1927). doi:10.1007/BF01400372
Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics, 2nd edn. Springer, New York (1990)
Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37(12), 863–867 (1926). doi:10.1007/BF01397477; English transl., J.A. Wheeler and W.H. Zurek, Quantum Theory and Measurement (1983) 52–55
Bohm, D.: A suggested Interpretation of the quantum theory in terms of “Hidden” variables. I. Phys. Rev. 85(2), 166–179 (1952). doi:10.1103/PhysRev.85.166
Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. II. Phys. Rev. 85(2), 180–193 (1952). doi:10.1103/PhysRev.85.180
Tsekov, R.: Bohmian mechanics versus madelung quantum hydrodynamics. Ann. Univ. Sofia, Fac. Phys. SE 112–119 (2012). doi:10.13140/RG.2.1.3663.8245
Holland, P.: Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation. Ann. Phys. N. Y. 315(2), 505–531 (2005). doi:10.1016/j.aop.2004.09.008
Jánossy, L., Ziegler, M.: The hydrodynamical model of wave mechanics I: the motion of a single particle in a potential field. Acta Phys. Hung. 16(1), 37–48 (1963). doi:10.1007/BF03157004
Jánossy, L., Ziegler-Náray, M.: The hydrodynamical model of wave mechanics II: the motion of a single particle in an external electromagnetic field. Acta Phys. Hung. 16(4), 345–353 (1964). doi:10.1007/BF03157974
Jánossy, L., Ziegler-Náray, M.: The hydrodynamical model of wave mechanics III: electron spin. Acta Phys. Hung. 20(3), 233–251 (1966). doi:10.1007/BF03158167
Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8(2), 143–182 (1952). doi:10.1143/ptp/8.2.143
Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the madelung hydrodynamic equations. Phys. Rev. A 49(3), 1613–1617 (1994). doi:10.1103/Phys-RevA.49.1613
Gurtler, R., Hestenes, D.: Consistency in the formulation of the Dirac, Pauli, and Schrödinger theories. J. Math. Phys. 16(3), 573–584 (1975). doi:10.1063/1.522555
Hestenes, D., Gurtler, R.: Local observables in quantum theory. Am. J. Phys. 39(9), 1028–1038 (1971). doi:10.1119/1.1986364
Tsekov, R.: Dissipative and quantum mechanics. New Adv. Phys. 3: 35–44 (2009). arXiv:0903.0283v5
Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96(1), 208–216 (1954). doi:10.1103/PhysRev.96.208
Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1993)
Wallstrom, T.C.: On the derivation of the Schrödinger equation from stochastic mechanics. Found. Phys. Lett. 2(2), 113–126 (1989). doi:10.1007/BF00696108
Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics: Part I. Manifolds, Lie Groups and Hamiltonian Systems. Theoretical and Mathematical Physics. Springer, Dordrecht (2013). doi:10.1007/978-94-007-5345-7
Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)
Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco (2004)
Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)
Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)
Reddiger, M.: An Observer’s View on Relativity: Space-Time Splitting and Newtonian Limit. Thesis, in preparation (2017)
Poor, W.A.: Differential Geometric Structures. Dover, Mineola (2007)
O’Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity. Academic Press, San Diego (1983)
Acheson, D.J.: Elementary Fluid Dynamics. Clarendon Press, Oxford (1990)
Weber, H.: Ueber eine Transformation der hydrodynamischen Gleichungen. J. Reine Angew. Math. 68, 286–292 (1867)
MacRobert, T.M.: Spherical Harmonics: An Elementary Treatise on Harmonic Functions with Applications, 3rd edn. Pergamon Press, Oxford (1967)
Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing, New York (1965)
Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory: Course of Theoretical Physics, vol. 3. Butterworth-Heinemann, Oxford (1977)
Jüngel, A., Mariani, M.C., Rial, D.: Local existence of solutions to the transient quantum hydrodynamic equations. Math. Mod. Meth. Appl. S. 12(4), 485–495 (2002). doi:10.1142/S0218202502001751
Zak, M.: The origin of randomness in quantum mechanics. Electron. J. Theor. Phys. 11(31), 149–164 (2014)
Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115(3), 485–491 (1959)
Becnel, J., Sengupta, A.: The Schwartz space: tools for quantum mechanics and infinite dimensional. Mathematics 3(2), 527–562 (2015). doi:10.3390/math3020527
Kolmogoroff, A.: Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik und Ihrer Grenzgebiete, Springer, Berlin (1933); English transl. in Foundations of the Theory of Probability, 2nd ed., translated by N. Morrison, Chelsea Publishing, New York (1956)
Klenke, A.: Probability Theory: A Comprehensive Course. Springer, Berlin (2007)
Stein, E.M., Shakarchi, R.: Fourier Analysis: An Introduction. Princeton University Press, Princeton (2003)
Rédei, M., Summers, S.J.: Quantum probability theory. Stud. Hist. Philos. Mod. Phys. 38(2): 390–417 (2007). doi:10.1016/j.shpsb.2006.05.006. arXiv: quant-ph/0601158
Streater, R.F.: Classical and quantum probability. J. Math. Phys. 41(6), 3556–3603 (2000). doi:10.1063/1.533322
Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45(7), 455–457 (1927). doi:10.1007/BF01329203
Fleming, W.H.: Functions of Several Variables. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (1977)
Nelson, E.: Review of stochastic mechanics. J. Phys. Conf. Ser. 361, 012011 (2012). doi:10.1088/1742-6596/361/1/012011
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935). doi:10.1103/PhysRev.47.777
McKay, D.: A simple proof that the curl defined as circulation density is a vector-valued function, and an alternative approach to proving Stoke’s Theorem. Adv. Pure Math. 2(1), 33–35 (2012). doi:10.4236/apm.2012.21007
Salesi, G.: Spin and madelung fluid. Mod. Phys. Lett. A 11(22), 1815–1823 (1996). doi:10.1142/S0217732396001806
Spera, M.: On some hydrodynamical aspects of quantum mechanics. Cent. Eur. J. Phys. 8(1), 42–48 (2010). doi:10.2478/s11534-009-0070-4. arXiv: 0902.0691
Takabayasi, T.: Vortex, spin and triad for quantum mechanics of spinning particle. I. Prog. Theor. Phys. 70(1), 1–17 (1983)
Bohm, D., Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation (A). Nuovo Cim. 1, 48–66 (1955). doi:10.1007/BF02743528
Bohm, D., Schiller, R.: A causal Interpretation of the Pauli Equation (B). Nuovo Cim. 1, 67–91 (1955). doi:10.1007/BF02743529
Nykamp, D.Q.: Subtleties about curl (2015). http://mathinsight.org/curlsubtleties
National Committee for Fluid Mechanics Films (NCFMF), Vorticity, MIT, 1961. Video. http://web.mit.edu/hml/ncfmf.html
Baggott, J.: The Meaning of Quantum Theory: A Guide for Students of Chemistry and Physics. Oxford University Press, New York (1992)
Couder, Y., Fort, E., Gautier, C.-H., Boudaoud, A.: From bouncing to floating: noncoalescence of drops on a fluid. Phys. Rev. Lett. 94(17), 177801 (2005). doi:10.1103/PhysRevLett.94.177801
Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437, 208 (2005). doi:10.1038/437208a
Protiére, S., Boudaoud, A., Couder, Y.: Particle wave association on a fluid interface. J. Fluid Mech. 554, 85–108 (2006). doi:10.1017/S0022112006009190
Bush, J.W.M.: Quantum mechanics writ large. Proc. Natl. Acad. Sci. USA 107(41), 17455–17456 (2010). doi:10.1073/pnas.1012399107
Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97(15), 154101 (2006). doi:10.1103/Phys-RevLett.97.154101
Eddi, A., Fort, E., Moisy, F., Couder, Y.: Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett. 102(24), 240401 (2009). doi:10.1103/PhysRevLett.l02.240401
Michelson, A.A., Morley, E.: On the relative motion of the earth and the luminiferous ether. Am. J. Sci. 34(203), 333–345 (1887)
Einstein, A., Minkowski, H.: The Principle of Relativity: Original Papers by A. Einstein and H. Minkowski. Calcutta University Press, Calcutta (1920)
Sachs, R.K., Wu, H.: General Relativity for Mathematicians. Graduate Texts in Mathematics, vol. 48. Springer, New York (1977)
Delphenich, D.H.: The geometric origin of the madelung potential (2002) arXiv:gr-qc/0211065v1
Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1079–1085 (1966). doi:10.1103/PhysRev.150.1079
Bondi, S.H.: Gravitational waves in general relativity XVI. Standing waves. Proc. R. Soc. Lon. Ser.-A 460(2042), 463–470 (2004). doi:10.1098/rspa.2003.1176
van Raamsdonk, M.: Building up spacetime with quantum entanglement. Int. J. Mod. Phys. A 19(14), 2429–2435 (2010). doi:10.1142/S0218271810018529
Wheeler, J.A.: Geometrodynamics. Topics of Modern Physics, vol. 1. Academic Press, New York (1962)
Wheeler, J.A.: Einsteins Vision: Wie steht es heute mit Einsteins Vision, alles als Geometrie aufzufassen?. Springer, Berlin (1968)
Nicolić, H.: Quantum mechanics: myths and facts. Found. Phys. 37, 1563–1611 (2007). doi:10.1007/s10701-007-9176-y
Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J., Couder, Y.: Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. USA 107(41), 17515–17520 (2010). doi:10.1073/pnas.1007386107
Weinberg, S.: The Quantum Theory of Fields: Modern Applications, vol. 2. Cambridge University Press, Cambridge (1996)
Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)
Bohm, D., Hiley, B.J., Kaloyerou, P.N.: An ontological basis for the quantum theory. Phys. Rep. 144(6), 321–375 (1987). doi:10.1016/0370-1573(87)90024-X
Acknowledgements
I would like to thank the following people who have made this work possible in various ways: Ina, Heiko and Marcel Reddiger, Helmut and Erika Winter, Erich and Rita Reddiger, Katie, Timothy and Camden Pankratz, Whitney Janzen-Pankratz, Viktor Befort, Viola Elsenhans, Adam Murray, Marcus Bugner, Alexander Gietelink Oldenziel, Christof Tinnes, Knut Schnürpel, Thomas Kühn, Arwed Schiller, Gerd Rudolph, Dennis Dieks, Gleb Arutyunov, Wolfgang Hasse and Maaneli Derakhshani. Moreover, I am grateful to Adam Murray and Markus Fenske for their help in correcting the manuscript and the two anonymous referees for their constructive comments. Thanks goes also to the dear fellow who wrote the Wikipedia article on the Madelung equations, without which I might have not stumbled upon them and realized their importance.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reddiger, M. The Madelung Picture as a Foundation of Geometric Quantum Theory. Found Phys 47, 1317–1367 (2017). https://doi.org/10.1007/s10701-017-0112-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10701-017-0112-5
Keywords
- Geometric quantization
- Interpretation of quantum mechanics
- Geometric quantum theory
- Madelung equations
- Classical limit