Skip to main content

Can We Falsify the Consciousness-Causes-Collapse Hypothesis in Quantum Mechanics?

Abstract

In this paper we examine some proposals to disprove the hypothesis that the interaction between mind and matter causes the collapse of the wave function, showing that such proposals are fundamentally flawed. We then describe a general experimental setup retaining the key features of the ones examined, and show that even a more general case is inadequate to disprove the mind-matter collapse hypothesis. Finally, we use our setup provided to argue that, under some reasonable assumptions about consciousness, such hypothesis is unfalsifiable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    For extreme cases where there might be some differences, albeit not necessarily directly observable; see [8, 9] or [10].

  2. 2.

    The coherent state \(|\alpha \rangle \) of a harmonic oscillator behaves, in some sense, in a similar way to its classical counterpart. For instance, its expected value also oscillates with the same frequency as a classical oscillator, and with amplitude of oscillation \(\alpha \). Coherent states are of great importance in quantum optics; see e.g. [19].

  3. 3.

    Readers not familiar with fourth-order interference are encouraged to consult [23] or one of the many excellent textbooks on quantum optics, such as [24].

  4. 4.

    In fact, the total number of photons reaching the participant (either human or not) is quite large, and it is not until coincidence counts are performed that this number is reduced. So, the task of reconstructing an interference pattern, even if the actual photon count per second could be reduced to a reasonable number to be dealt with, would be very time consuming and daunting.

  5. 5.

    To be more precise, elements in the Hilbert space that are not entangled with the original photon state need not return to the original quantum state. Furthermore, for elements that are weakly entangled it may not be necessary to return them to the original state either, though not returning them would reduce the visibility of the quantum superposition. However, this is not essential for the arguments that follow, since the number of degrees of freedom that get entangled correspond to a macroscopic portion of the cockroach.

  6. 6.

    Unless we take a panpsychist view, which would, in the case of CCCH raise other problems.

References

  1. 1.

    Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. I. Phys. Rev. 85(2), 166 (1952). doi:10.1103/PhysRev.85.166

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. II. Phys. Rev. 85(2), 180 (1952). doi:10.1103/PhysRev.85.180

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Everett, H.: Relative state formulation of quantum mechanics. Rev. Modern Phys. 29(3), 454 (1957). doi:10.1103/RevModPhys.29.454

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Bohm, D., Bub, J.: A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev. Modern Phys. 38(3), 453 (1966). doi:10.1103/RevModPhys.38.453

  5. 5.

    Omnes, R.: The Interpretation of Quantum Mechanics. Princeton University Press (1994)

  6. 6.

    Fuchs, C.A.: The philosophy of science in a European perspective. In: Galavotti, M., Dieks, D., Gonzales, J., Hartmann, S., Uebel, T., Weber, M. (eds.) New Directions in the Philosophy of Science (2014)

  7. 7.

    Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge Univ Pr (1995)

  8. 8.

    de Barros, J.A., Pinto-Neto, N.: Int. J. Modern Phys. D 7(02), 201 (1998)

    ADS  Article  Google Scholar 

  9. 9.

    de Barros, J.A., Pinto-Neto, N., Sagioro-Leal, M.A.: Phys. Lett. A 241(4), 229 (1998)

    ADS  Article  Google Scholar 

  10. 10.

    Valentini, A., Westman, H.: Dynamical origin of quantum probabilities. Proc. R. Soc. Lond. A 461(2053), 253 (2005). doi:10.1098/rspa.2004.1394

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  12. 12.

    Stapp, H.P.: Mind, matter, mechanics, quantum . In: Stapp, H.P. (ed.) The Frontiers Collection, pp. 81–118. Springer, Berlin (2009)

  13. 13.

    Yu, S., Nikolic, D.: Quantum mechanics needs no consciousness. Annalen der Physik 523(11), 931 (2011). doi:10.1002/andp.201100078

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Thaheld, F.H.: Can the Stark-Einstein law resolve the measurement problem from an animate perspective? Biosystems 135, 50 (2015). doi:10.1016/j.biosystems.2015.07.005

    Article  Google Scholar 

  15. 15.

    Neumann, J.V.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1932)

  16. 16.

    Freire Junior, O.: Quantum Dissidents: Rebuilding the Foundations of Quantum Mechanics (1950–1990). Springer, Heidelberg (2015)

  17. 17.

    Stapp, H.P.: Cosmos Hist. 10(1), 227 (2014)

    Google Scholar 

  18. 18.

    Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18(4), 756 (2008). doi:10.1063/1.523304

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, New York (1994)

    Book  MATH  Google Scholar 

  20. 20.

    de Barros, J.A., Oas, G.: Cosm. Hist. J. Nat. Soc. Philos. 11(2), 146 (2015)

  21. 21.

    de Barros, J.A.: In: O’Nuallain, S. (ed) Foundations of Mind. Cambridge Scholars Publishing, Berkeley (2016)

  22. 22.

    Kim, Y.H., Yu, R., Kulik, S.P., Shih, Y., Scully, M.O.: Delayed “Choice” quantum eraser. Phys. Rev. Lett. 84(1), 1 (2000). doi:10.1103/PhysRevLett.84.1

    ADS  Article  Google Scholar 

  23. 23.

    Ou, Z.Y.: Quantum theory of fourth-order interference. Phys. Rev. A 37(5), 1607 (1988). doi:10.1103/PhysRevA.37.1607

    ADS  Article  Google Scholar 

  24. 24.

    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press (1995)

  25. 25.

    Rubin, M.H., Klyshko, D.N., Shih, Y.H., Sergienko, A.V.: Theory of two-photon entanglement in type-II optical parametric down-conversion. Phys. Rev. A 50(6), 5122 (1994). doi:10.1103/PhysRevA.50.5122

    ADS  Article  Google Scholar 

  26. 26.

    Strekalov, D.V., Sergienko, A.V., Klyshko, D.N., Shih, Y.H.: Phys. Rev. Lett. 74(18), 3600 (1995). doi:10.1103/PhysRevLett.74.3600

    ADS  Article  Google Scholar 

  27. 27.

    Suppes, P., de Barros, J.A.: Quantum Interaction: Papers from the AAAI Spring Symposium. AAAI Press, Menlo Park (2007), Technical Report SS-07-08, pp. 75–82

  28. 28.

    Lent, D.D., Kwon, H.W.: Antennal movements reveal associative learning in the American cockroach Periplaneta americana. J. Exp. Biol. 207(2), 369 (2004). doi:10.1242/jeb.00736

    Article  Google Scholar 

  29. 29.

    Bruno, N., Martin, A., Sekatski, P., Sangouard, N., Thew, R.T., Gisin, N.: Displacement of entanglement back and forth between the micro and macro domains. Nat. Phys. 9(9), 545–548 (2013). doi:10.1038/nphys2681. http://www.nature.com/nphys/journal/v9/n9/full/nphys2681.html

  30. 30.

    Li, T., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61(2), 163–171 (2016). doi:10.1007/s11434-015-0990-x. https://link.springer.com/article/10.1007/s11434-015-0990-x

  31. 31.

    Z. qi Yin, T. Li, Contemporary Physics 58(2), 119 (2017)

  32. 32.

    Schlosshauer, M., Kofler, J., Zeilinger, A.: A snapshot of foundational attitudes toward quantum mechanics. Stud. Hist. Phil. Mod. Phys. 44(3), 222–230 (2013). doi:10.1016/j.shpsb.2013.04.004

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This is a continuation of our work with Pat Suppes, who passed away in November 2014. This research was partially supported by the Patrick Suppes Gift Fund for the Suppes Brain Lab. Pat’s support to this paper is gratefully acknowledged, as well as John Perry’s hospitality while JAB visited the Center for the Explanation of Consciousness at CSLI, Stanford University, where part of this work was conducted. We also thank Henry Stapp, Bas van Fraassen, and the anonymous referees for comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Acacio de Barros.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Barros, J.A., Oas, G. Can We Falsify the Consciousness-Causes-Collapse Hypothesis in Quantum Mechanics?. Found Phys 47, 1294–1308 (2017). https://doi.org/10.1007/s10701-017-0110-7

Download citation

Keywords

  • Measurement problem
  • Von Neumann-Wigner interpretation
  • Collapse of the wave function
  • Fourth-order interference