Khrennikov, A.: Quantum Theory: Reconsideration of Foundations. Växjö Univ. Press, Växjö (2002)
MATH
Google Scholar
Adenier, G., Fuchs, C., Khrennikov, A. (eds.): Foundations of Probability and Physics-4, AIP Conference Proceedings, vol. 889. American Institute of Physics, Melville, NY (2007)
Google Scholar
Khrennikov, A., Weihs, G.: Preface of the special issue Quantum foundations: theory and experiment. Found. Phys. 42(6), 721–724 (2012). doi:10.1007/s10701-012-9644-x
ADS
MathSciNet
Article
Google Scholar
Bengtsson, I., Khrennikov, A.: Preface. Found. Phys. 41(3), 281 (2011). doi:10.1007/s10701-010-9524-1
ADS
MathSciNet
Article
Google Scholar
D’Ariano, G.M., Jaeger, G., Khrennikov, A., Plotnitsky, A.: Preface of the special issue Quantum theory: advances and problems. Physica Scripta T163, 010301 (2014). doi:10.1088/0031-8949/2014/T163/010301
Article
Google Scholar
Khrennikov, A., de Raedt, H., Plotnitsky, A., Polyakov, S.: Preface of the special issue Probing the limits of quantum mechanics: theory and experiment, vol. 1. Found. Phys. 45(7), 707–710 (2015). doi:10.1007/s10701-015-9911-8
ADS
MathSciNet
Article
MATH
Google Scholar
Khrennikov, A., de Raedt, H., Plotnitsky, A., Polyakov, S.: Preface of the special issue Probing the limits of quantum mechanics: theory and experiment, vol. 2. Found. Phys. published online (2015). doi: 10.1007/s10701-015-9950-1
D’Ariano, G.M., Khrennikov, A.: Preface of the special issue Quantum foundations: information approach. Philos. Trans. R. Soc. A 374, 20150244 (2016). doi:10.1098/rsta.2015.0244
MathSciNet
Article
MATH
Google Scholar
Coecke, B., Khrennikov, A.: Preface of the special issue Quantum theory: from foundations to technologies. Int. J. Quantum Inf. 14(4), 1602001 (2016). doi:10.1142/S0219749916020019
MathSciNet
Article
MATH
Google Scholar
Chiribella, G., Spekkens, R.W. (eds.): Quantum Theory: Informational Foundations and Foils, Fundamental Theories in Physics, vol. 181. Springer, Dordrecht (2016)
MATH
Google Scholar
Zauner, G. Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie. PhD thesis, University of Vienna, 1999. Published in English translation: Zauner, G. Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf. 9 (2011). 445–508 doi: 10.1142/S0219749911006776 http://www.gerhardzauner.at/qdmye.html
Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004). doi:10.1063/1.1737053
ADS
MathSciNet
Article
MATH
Google Scholar
Appleby, M., Fuchs, C.A., Stacey, B.C., Zhu, H.: Introducing the Qplex: a novel arena for quantum theory. forthcoming in Eur. Phys. J. D (2017). arXiv: 1612.03234 [quant-ph]
Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51, 042203 (2010). doi:10.1063/1.3374022
ADS
MathSciNet
Article
MATH
Google Scholar
Scott, A.J.: SICs: Extending the list of solutions. (2017) arXiv: 1703.03993 [quant-ph]
Fuchs, C.A., Hoang, M.C., Stacey, B.C.: The SIC question: history and state of play. (2016) arXiv: 1703.07901 [quant-ph]
Appleby, M., Chien, T.Y., Flammia, S., Waldron, S.: Constructing exact symmetric informationally complete measurements from numerical solutions. (2017) arXiv: 1703.05981 [quant-ph]
Stacey, B.C.: Sporadic SICs and the normed division algebras. Found. Phys. (2017). doi:10.1007/s10701-017-0087-2
Appleby, M., Flammia, S., McConnell, G., Yard, J.: SICs and algebraic number theory. Found. Phys. (2017). doi:10.1007/s10701-017-0090-7
Appleby, M., Flammia, S., McConnell, G., Yard, J.: Generating ray class fields of real quadratic fields via complex equiangular lines. (2016) arXiv: 1604.06098 [math.NT]
Bengtsson, I.: The number behind the simplest SIC-POVM. Found. Phys. (2017). doi:10.1007/s10701-017-0078-3
Hartnett, K.: A new path to equal-angle lines, Quanta Magazine (2017). https://www.quantamagazine.org/a-new-path-to-equal-angle-lines/
Klarreich, E.: Sphere packing solved in higher dimensions, Quanta Magazine (2016). https://www.quantamagazine.org/20160330-sphere-packing-solved-in-higher-dimensions/
Klarreich, E.: Landmark algorithm breaks 30-year impasse, Quanta Magazine (2015). https://www.quantamagazine.org/20151214-graph-isomorphism-algorithm/
Klarreich, E.: A design dilemma solved, minus designs, Quanta Magazine (2015). https://www.quantamagazine.org/20150609-a-design-dilemma-solved-minus-designs/
Zhu, H.: Quantum state estimation and symmetric informationally complete POMs. PhD thesis, National University of Singapore (2012)
Tabia, G.N.M., Appleby, M.: Exploring the geometry of qutrit state space using symmetric informationally complete probabilities. Phys. Rev. A 88(1), 012131 (2013). doi:10.1103/PhysRevA.88.012131
ADS
Article
Google Scholar
Stacey, B.C.: SIC-POVMs and compatibility among quantum states. Mathematics 4(2), 36 (2016). doi:10.3390/math4020036
MathSciNet
Article
MATH
Google Scholar
DeBrota, J.B., Fuchs, C.A.: Negativity bounds for Weyl-Heisenberg quasiprobability representations. Found. Phys. 24, 1–22 (2017). doi:10.1007/s10701-017-0098-z
Google Scholar
Zhu, H.: Quasiprobability representations of quantum mechanics with minimal negativity. Phys. Rev. Lett. 117(12), 120404 (2016). doi:10.1103/PhysRevLett.117.120404
ADS
Article
Google Scholar
Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 82(8), 749–754 (2014). doi:10.1119/1.4874855
ADS
Article
Google Scholar
Stacey, B.C.: Von Neumann was not a Quantum Bayesian. Philos. Trans. R. Soc. A 374, 20150235 (2016). doi:10.1098/rsta.2015.0235
ADS
Article
Google Scholar
Fuchs, C.A., Stacey, B.C.: QBism: Quantum theory as a hero’s handbook, Enrico Fermi Summer School lecture notes, (2016) arXiv: 1612.07308 [quant-ph]
Fuchs, C.A.: Notwithstanding Bohr, the reasons for QBism. (2017) arXiv: 1705.03483 [quant-ph]
Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum walks, Weyl equation and the Lorentz group. Found. Phys. (2017). doi:10.1007/s10701-017-0086-3
Khrennikov, A.: The present situation in quantum theory and its merging with general relativity. Found. Phys. (2017). doi:10.1007/s10701-017-0089-0
Loubenets, E.R.: Bell’s nonlocality in a general nonsignaling case: Quantitatively and conceptually. Found. Phys. (2017). doi:10.1007/s10701-017-0077-4
Plotnitsky, A.: On the character of quantum law: complementarity, entanglement, and information. Found. Phys. (2017). doi:10.1007/s10701-017-0101-8