Foundations of Physics

, Volume 47, Issue 11, pp 1387–1422 | Cite as

Interpretations of Quantum Theory in the Light of Modern Cosmology

  • Mario Castagnino
  • Sebastian Fortin
  • Roberto LauraEmail author
  • Daniel Sudarsky


The difficult issues related to the interpretation of quantum mechanics and, in particular, the “measurement problem” are revisited using as motivation the process of generation of structure from quantum fluctuations in inflationary cosmology. The unessential mathematical complexity of the particular problem is bypassed, facilitating the discussion of the conceptual issues, by considering, within the paradigm set up by the cosmological problem, another problem where symmetry serves as a focal point: a simplified version of Mott’s problem.


Interpretation of quantum mechanics Measurement problem Foundations of quantum mechanics 



This work was supported, in part, by CONACYT (México) Project 101712, a PAPPIT-UNAM (México) project IN107412 and sabbatical fellowships from CONACYT and DGAPA-UNAM (México). D.S. wants to thank the IAFE at the university of Buenos Aires for the hospitality during the sabbatical stay. This work was partially supported by Grants: of the Research Council of Argentina (CONICET), by the Endowment for Science and by Technology of Argentina (FONCYT), and by the University of Buenos Aires. We acknowledge very useful discussions with B. Kay and Elias Okon.


  1. 1.
    De Witt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    Wheeler, J.A.: In: De Witt, C., Wheeler, J.A. (eds.) Battelle Reencontres 1987. Benjamin, New York (1968)Google Scholar
  3. 3.
    Isham, C.J.: Canonical Quantum Gravity and the Problem of Time, GIFT Semminar-0157228 (1992) qr-qc/9210011Google Scholar
  4. 4.
    See for instance Isham, J.: (1992) gr-qc/9210011Google Scholar
  5. 5.
    Guth, A.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981). For a more exhaustive discussion see for instance the relevant chapter in The Early Universe, E.W. Kolb and M.S. Turner, Frontiers in Physics Lecture Note Series (Addison Wesley Publishing Company 1990)Google Scholar
  6. 6.
    Muckhanov, V.: Physical Foundations of Cosmology, p. 348. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  7. 7.
    Halliwell, J.J.: Decoherence in quantum cosmology. Phys. Rev. D 39, 2912 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Kiefer, C.: Origin of classical structure from inflation. Nucl. Phys. Proc. Suppl. 88, 255 (2000). arXiv:astro-ph/0006252
  9. 9.
    Polarski, D., Starobinsky, A.A.: Semiclassicality and decoherence of cosmological perturbations. Class. Quant. Grav. 13, 377 (1996) arXiv: gr-qc/9504030
  10. 10.
    Zurek, W.H.: Environment induced superselection in cosmology. In: Cosmology in Moscow 1990, Proceedings, Quantum gravity (QC178:S4:1990), pp. 456–472. (see High Energy Physics Index 30 (1992) No. 624)Google Scholar
  11. 11.
    Branderberger, R., Feldman, H., Mukhavov, V.: Gauge invariant cosmological perturbations. Phys. Rep. 215, 203 (1992)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Laflamme, R., Matacz, A.: Decoherence functional and inhomogeneities in the early universe. Int. J. Mod. Phys. D 2, 171 (1993) arXiv:gr-qc/9303036
  13. 13.
    Castagnino, M., Lombardi, O.: The self-induced approach to decoherence in cosmology. Int. J. Theory Phys. 42, 1281 (2003). arXiv:quant-ph/0211163
  14. 14.
    Lombardo, F.C., Lopez Nacir, D.: Decoherence during inflation: The generation of classical inhomogeneities, Phys. Rev. D 72, 063506 (2005). arXiv:gr-qc/0506051
  15. 15.
    Martin, J.: Inflationary Cosmological Perturbations of Quantum Mechanical Origin. Lecture Notes in Physics, vol. 669, 199 (2005). arXiv:hep-th/0406011
  16. 16.
    Grishchuk, L.P., Martin, J.: Best unbiased estimates for microwave background anisotropies. Phys. Rev. D 56, 1924 (1997). arXiv:gr-qc/9702018
  17. 17.
    Barvinsky, A.O., Kamenshchik, A.Y., Kiefer, C., Mishakov, I.V.: Decoherence in quantum cosmology at the onset of inflation. Nucl. Phys. B 551, 374 (1999). arXiv:gr-qc/9812043
  18. 18.
    Padmanabhan, T.: Structure Formation in the Universe, p. 364. Cambridge University Press, Cambridge (1993). Section 10.4Google Scholar
  19. 19.
    Boucher, W., Traschen, J.: Semiclassical physics and quantum fluctuations. Phys. Rev. D 37, 3522–3532 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    Weinberg, S.: Cosmology, p. 476. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  21. 21.
    Mott, N.F.: The wave mechanics of \(\alpha \)-ray tracks. Proc. R. Soc. Lond. 126(800), 79 (1929)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Lecture Notes in Physics, vol. 587. Springer, Berlin (2002)Google Scholar
  23. 23.
    Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)Google Scholar
  24. 24.
    Joos, E., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)CrossRefGoogle Scholar
  25. 25.
    Castagnino, M., Fortin, S.: Predicting decoherence in discrete models. Int. J. Theory Phys. 50, 2259–2267 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Castagnino, M., Fortin, S., Lombardi, O.: Is the decoherence of a system the result of its interaction with the environment? Mod. Phys. Lett. A 25, 1431–1439 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Butterfield, J., Earman, J. (eds.): Philosophy of Physics, Handbook of the Philosophy of Science. North-Holland Elsevier, Amsterdam (2007)Google Scholar
  28. 28.
    Harrison, E.R.: Fluctuations at the threshold of classical cosmology. Phys. Rev. D 1, 2726 (1970)ADSCrossRefGoogle Scholar
  29. 29.
    Zel’dovich, Y.B.: A hypotesis, unifying the structure and the entropy of the universe. Mon. Not. R. Astron. Soc. 160, 1 (1972)CrossRefADSGoogle Scholar
  30. 30.
    Lange, A.E., et al.: Cosmological parameters from first results of Boomerang. Phys. Rev. D 63, 042001 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Hinshaw, G., et al.: Astrophys. J. Supp. 148, 135 (2003)Google Scholar
  32. 32.
    Gorski, K.M., et al.: Power spectrum of primordial inhomogeneity determined from four year COBE DMR SKY Maps. Astrophys. J. 464, L11 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    Bennett, C.L., et al.: First year wilkinson microwave anisotropy probe (WMAP) observations: preliminary results. Astrophys. J. Suppl. 148, 1 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Bennett, C., et al.: First year Wilkinson microwave anisotropy probe (WMAP) observations: foreground emission. Astrophys. J. Suppl. 148, 97 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Hinshaw, G. et al.: [WMAP Collaboration], Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. arXiv:1212.5226 [astro-ph.CO]
  36. 36.
    Larson, D., Dunkley, J., Hinshaw, G., Komatsu, G., Nolta, M.R., Bennett, C.L., Gold, B., Halpern, M., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. 192, 16 (2011). arXiv:1001.4635 [astro-ph.CO]
  37. 37.
    Ade, P.A.R.: (Planck collaboration), Planck 2013 results. XV. CMB powerspectra and likelihood (2013). arXiv:1303.5075 [astro-ph.CO]
  38. 38.
    Perez, A., Sahlmman, H., Sudarsky, D.: On the quantum mechanical origin of the seeds of cosmic structure. Class. Quantum Gravity 23, 2317 (2006)ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    Diez-Tejedor, A., Sudarsky, D.: Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure. JCAP 045, 1207 (2012). arXiv:1108.4928 [gr-qc]
  40. 40.
    de Unanue, A., Sudarsky, D.: Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure. Phys. Rev. D 78, 043510 (2008). arXiv:0801.4702 [gr-qc]
  41. 41.
    León García, G., Sudarsky, D.: The slow roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: contrasts and similarities of standard account and the “collapse scheme. Class. Quantum Gravity 27, 225017 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    León García, G., De Unanue, A. , Sudarsky, D.: Multiple quantum collapse of the inflaton field and its implications on the birth of cosmic structure. Class. Quantum Gravity, 28, 155010 (2011). arXiv:1012.2419 [gr-qc]
  43. 43.
    León García, G., Sudarsky, D.: Novel possibility of observable non-Gaussianities in the inflationary spectrum of primordial inhomogeneities. Sigma 8, 024 (2012)zbMATHGoogle Scholar
  44. 44.
    Diez-Tejedor, A., León García, G., Sudarsky, D.: The collapse of the wave function in the joint metric-matter quantization for inflation. Gen. Relativ. Gravity 44, 2965, (2012). arXiv:1106.1176 [gr-qc]
  45. 45.
    Landau, S.J., Scoccola, C.G., Sudarsky, D.: Cosmological constraints on nonstandard inflationary quantum collapse models. Phys. Rev. D 85, 123001 (2012). arXiv:1112.1830 [astro-ph.CO]
  46. 46.
    Scully, M.O., Shea, R., Mc Cullen, J.D.: State reduction oin quantum mechanics. A calculational example. Phys. Rep. 43, 485–498 (1978)ADSCrossRefGoogle Scholar
  47. 47.
    Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)ADSCrossRefMathSciNetGoogle Scholar
  48. 48.
    Zurek, W.A.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    Barbour, J.B.: The timelessness of quantum gravity: I. The evidence from the classical theory. Class. Quantum Gravity 11, 2853–2873 (1994)ADSCrossRefMathSciNetGoogle Scholar
  50. 50.
    Barbour, J.B.: The timelessness of quantum gravity: II. The apperearance of dynamics in statics configurations. Class. Quantum Gravity 11, 2853–2873 (1994)ADSCrossRefGoogle Scholar
  51. 51.
    Earman, J.: World Enough and Space-Time. MIT Press, Cambridge, MA (1996)Google Scholar
  52. 52.
    Cohen, D.W.: An Introduction to Hilbert Space and Quantum Logic. Springer, London (2011)Google Scholar
  53. 53.
    Holik, F., Massri, C., Ciancaglini, N.: Convex quantum logic. Int. J. Theor. Phys. 51, 1600–1620 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Holik, F., Massri, C., Plastino, A., Zuberman, L.: On the lattice structure of probability spaces in quantum mechanics. Int. J. Theory Phys. 52, 1836–1876 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Faye, J.: Copenhagen interpretation of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2008 Edition).
  56. 56.
    Lombardi, O., Dieks, D.: Modal interpretations of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2012 Edition).
  57. 57.
    Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, New York (1978)zbMATHGoogle Scholar
  58. 58.
    Ballentine, L.E.: Quantum Mechanics. Prentice Hall, New York (1990)zbMATHGoogle Scholar
  59. 59.
    van Fraassen, B.C.: A formal approach to the philosophy of science. In: Colodny, R. (ed.) Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain, pp. 303–366. University of Pittsburgh Press, Pittsburgh (1972)Google Scholar
  60. 60.
    Bacciagaluppi, G.: Kohen-Specker theorem in the modal interpretation of quantum mechanics. Int. J. Theor. Phys. 34, 1206–1215 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Clifton, R.: The properties of modal interpretations of quantum mechanics. Br. J. Philos. Sci. 47, 371–398 (1996)CrossRefMathSciNetGoogle Scholar
  62. 62.
    Vermaas, P.E.: Two no-go theorems for modal interpretations of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 30, 403–431 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    Bacciagaluppi, G., Dickson, M.: Dynamics for modal interpretations. Found. Phys. 29, 1165–1201 (1999)CrossRefMathSciNetGoogle Scholar
  64. 64.
    Kochen, S.: A new interpretation of quantum mechanics. In: Mittelstaedt, P., Lahti, P. (eds.) Symposium on the Foundations of Modern Physics. World Scientific, Singapore (1985)Google Scholar
  65. 65.
    Dieks, D.: The formalism of quantum theory: an objetive description of reality? Annalen der Physik 7, 174–190 (1988)ADSCrossRefMathSciNetGoogle Scholar
  66. 66.
    Dieks, D.: Quantum mechanics without the projection postulate and its realistic interpretation. Found. Phys. 38, 1397–1423 (1989)ADSCrossRefMathSciNetGoogle Scholar
  67. 67.
    Dieks, D.: Resolution of the measurement problem through decoherence of the quantum state. Phys. Lett. A 142, 439–446 (1989)ADSCrossRefMathSciNetGoogle Scholar
  68. 68.
    Bene, G., Dieks, D.: A perspectival version of the modal interpretation of quantum mechanicsand the origin of macroscopic behaviour. Found. Phys. 32, 645–671 (2002)CrossRefMathSciNetGoogle Scholar
  69. 69.
    Lombardi, O., Fortin, S., Castagnino, M.: The problem of identifying the system and the environment in the phenomenon of decoherence. In: de Regt, H.W., Hartmann, S., Okasha, S. (eds.) European Philosophy of Science Association (EPSA). Philosophical Issues in the Sciences, vol. 3, pp. 161–174. Springer, Berlin (2012)Google Scholar
  70. 70.
    Castagnino, M., Fortin, S., Lombardi, O.: Suppression of decoherence in a generalization of the spin-bath model. J. Phys. A: Math. Theor. 43, 065304 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    Lombardi, O., Castagnino, M.: A modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 380–443 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  72. 72.
    Ardenghi, J.S., Castagnino, M., Lombardi, O.: Modal Hamiltonian interpretation of quantum mechanics and Casimir operators: the road toward quantum field theory. Int. J. Theor. Phys. 50, 774–791 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  73. 73.
    Bohm, D.: A suggested interpretation of quantum theory in terms of “hidden” variables I. Phys. Rev. 85, 166–179 (1952)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  74. 74.
    Bohm, D.: A suggested interpretation of quantum theory in terms of “hidden” variables II. Phys. Rev. 85, 180–193 (1952)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  75. 75.
    Valentini, A.: Inflationary cosmology as a probe of primordial quantum mechanics. Phys. Rev. D 82, 063513 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    Holland, P.R.: The Quantum Theory of Motion: An Account of the De Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  77. 77.
    Valentini, A.: Inflationary cosmology as a probe of primordial quantum mechanics. Phys. Rev. D 82, 063513 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Pinto-Neto, N., Santos, G., Struyve, W.: Quantum-to-classical transition of primordial cosmological perturbations in de Broglie-Bohm quantum theory. Phys. Rev. D 85, 083506 (2012). [arXiv:1110.1339]
  79. 79.
    Bohm, D.: Proof that probability density approach \(|\psi |^{2}\) in causal interpretations of the quantum theory. Phys. Rev. 89, 458–466 (1953)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  80. 80.
    Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2008 Edition).
  81. 81.
    Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)ADSCrossRefMathSciNetGoogle Scholar
  82. 82.
    Bacciagaluppi, G.: The role of decoherence in quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2012 Edition).
  83. 83.
    Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  84. 84.
    Omnès, R.: Logical reformulation of quantum mechanics. I. Foundations. J. Stat. Phys. 53, 893–932 (1988)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  85. 85.
    Omnès, R.: Logical reformulation of quantum mechanics. IV. Projectors in semiclassical physics. J. Stat. Phys. 57, 357–382 (1989)ADSCrossRefMathSciNetGoogle Scholar
  86. 86.
    Gell-Mann, M., Hartle, J.B.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information, pp. 425–458. Addison-Wesley, Reading, MA (1990)Google Scholar
  87. 87.
    Laura, R., Vanni, L.: Time translation of quantum properties. Found. Phys. 39, 160–173 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  88. 88.
    Vanni, L., Laura, R.: The logic of quantum measurements. Int. J. Theory Phys. 52, 2386–2394 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  89. 89.
    Losada, M., Vanni, L., Laura, R.: Probabilities for time-dependent properties in classical and quantum mechanics. Phys. Rev. A 87, 052128 (2013)ADSCrossRefGoogle Scholar
  90. 90.
    Losada, M., Laura, R.: The formalism of generalized contexts and decay processes. Int. J. Theor. Phys. 52, 1289–1299 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  91. 91.
    Weinberg, S.: Collapse of the State Vector. UTTG-18-11, (2011). arXiv:1109.6462
  92. 92.
    Hartle, J.B.: Quantum physics and human language. J. Phys. A 40, 3101 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  93. 93.
    Okon, E., Sudarsky, D.: On the consistency of the consistent histories approach to quantum mechanics. Found. Phys. 44, 19–33 (2014). arXiv:1301.2586
  94. 94.
    Hartle, J.B.: Quantum Cosmology Problems for the 21\({}^{st}\) Century (e-Print: gr-qc/9701022)Google Scholar
  95. 95.
    Hartle, J.B.: Generalized Quantum mechanics for Quantum Gravity (e-Print: gr-qc/0510126)Google Scholar
  96. 96.
    Kent, A.: Consistent sets yield contrary inferences in quantum theory. Phys. Rev. Lett. 87, 15 (1997)zbMATHMathSciNetGoogle Scholar
  97. 97.
    Dowker, F., Kent, A.: On the consistent histories approach to quantum mechanics. J. Statist. Phys. 82, 1575 (1996). arXiv:gr-qc/9412067
  98. 98.
    Bassi, A., Ghirardi, G.C.: Can the decoherent histories description of reality be considered satisfactory?. Phys. Lett. A 257, 247 (1999). arXiv:gr-qc/9811050
  99. 99.
    Bassi, A., Ghirardi, G.C.: About the notion of truth in the decoherent histories approach: a reply to Griffiths. Phys. Lett. A 265, 153 (2000). [arXiv:quant-ph/9912065]
  100. 100.
    Diosi, L.: Gravitation and quantum mechanical localization of macro-objects. Phys. Lett. A 105, 199–202 (1984)ADSCrossRefGoogle Scholar
  101. 101.
    Diosi, L.: A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 120, 377 (1987)ADSCrossRefGoogle Scholar
  102. 102.
    Diosi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Lett. A 40, 1165 (1989)Google Scholar
  103. 103.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1989)Google Scholar
  104. 104.
    Penrose1 Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravity 28, 581 (1996)Google Scholar
  105. 105.
    Ghirardi, G.C., Rimini, A., Weber, T.: A unified dynamics for micro and macro systems. Phys. Rev. D 34, 470 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  106. 106.
    Pearle, P.M.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277 (1989)ADSCrossRefGoogle Scholar
  107. 107.
    Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rept. 379, 257 (2003). [arXiv:quant-ph/0302164]
  108. 108.
    Pearle, P.: Reduction of the state vector by a nonlinear Schrodinger equation. Phys. Rev. D 13, 857 (1976)ADSCrossRefMathSciNetGoogle Scholar
  109. 109.
    Pearle, P.: Toward explaining why events occur. Int. J. Theory Phys. 18, 489 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  110. 110.
    Pearle, P.: Experimental tests of dynamical state-vector reduction. Phys. Rev. D 29, 235 (1984)ADSCrossRefMathSciNetGoogle Scholar
  111. 111.
    Pearle, P.: Combining stochastic dynamical state vector reduction with spontaneous localization. Phys. Rev. A 39, 2277 (1989)ADSCrossRefGoogle Scholar
  112. 112.
    Martin, J., Vennin, V., Peter, P.: Cosmological Inflation and the Quantum Measurement Problem (2012). arXiv:1207.2086
  113. 113.
    Cañate, P., Pearl, P., Sudarsky, D.: CSL Quantum Origin of the Primordial Fluctuation. Phys. Rev. D, 87, 104024 (2013). arXiv:1211.3463 [gr-qc]
  114. 114.
    Das, S., Lochan, K., Sahu, S., Singh, T. P.: Quantum to Classical Transition of Inflationary Perturbations—Continuous Spontaneous Localization as a Possible Mechanism. arXiv:1304.5094 [astro-ph.CO]
  115. 115.
    Okon, E., Sudarsky, D.: Benefits of objective collapse models for cosmology and quantum gravity. Found. Phys. 44 114–143 (2014). arXiv:1309.1730v1 [gr-qc]
  116. 116.
    Myrvold, W.C.: On peaceful coexistence: is the collapse postulate incompatible with relativity? Stud. Hist. Philos. Mod. Phys. 33, 435 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  117. 117.
    Tumulka, R.: On spontaneous wave function collapse and quantum field theory. Proc. Roy. Soc. Lond. A 462, 1897 (2006). arXiv:quant-ph/0508230
  118. 118.
    Bedingham, D.J.: Relativistic state reduction dynamics. Found. Phys. 41, 686 (2011). arXiv:1003.2774

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mario Castagnino
    • 1
  • Sebastian Fortin
    • 2
  • Roberto Laura
    • 3
    Email author
  • Daniel Sudarsky
    • 4
  1. 1.Instituto de Astronomía y Física del Espacio (CONICET-UBA) and Instituto de Física Rosario (CONICET-UNR)RosarioArgentina
  2. 2.CONICET, Departamento de Física FCEN (Universidad de Buenos Aires)Buenos AiresArgentina
  3. 3.Instituto de Física Rosario (CONICET-UNR) and Facultad de Ciencias ExactasIngeniería y Agrimensura (UNR)RosarioArgentina
  4. 4.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations