Advertisement

Foundations of Physics

, Volume 47, Issue 8, pp 1042–1059 | Cite as

SICs and Algebraic Number Theory

  • Marcus Appleby
  • Steven Flammia
  • Gary McConnell
  • Jon Yard
Article

Abstract

We give an overview of some remarkable connections between symmetric informationally complete measurements (SIC-POVMs, or SICs) and algebraic number theory, in particular, a connection with Hilbert’s 12th problem. The paper is meant to be intelligible to a physicist who has no prior knowledge of either Galois theory or algebraic number theory.

Keywords

SIC-POVMs Algebraic number theory Hilbert’s 12th problem 

Notes

Acknowledgements

We are grateful to John Coates, Brian Conrad, Steve Donnelly, James McKee, Andrew Scott, and Chris Smyth for many useful comments and discussions. This research was supported in part by the Australian Research Council via EQuS project number CE11001013, and in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science. SF acknowledges support from an Australian Research Council Future Fellowship FT130101744 and JY acknowledges support from National Science Foundation Grant No. 116143.

References

  1. 1.
    Zauner, G.: Quantendesigns. Grundzüge einer nichtkommutativen designtheorie. PhD thesis, University of Vienna, 1999. Published in English translation: G. Zauner, “Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf. 9: 445–508 (2011)Google Scholar
  2. 2.
    Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fuchs, C.A., Sasaki, M.: Squeezing quantum information through a classical channel: measuring the quantumness of a set of quantum states. Quantum Inf. Comput. 3, 377–404 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Řeháček, J., Englert, B.-G., Kaszlikowski, D.: Minimal qubit tomography. Phys. Rev. A 70, 052321 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Englert, B.-G., Kaszlikowski, D., Ng, H.K., Chua, W.K., Řeháček, J., Anders, J.: Efficient and robust quantum key distribution with minimal state tomography. quant-ph/0412075Google Scholar
  6. 6.
    Scott, A.J.: Tight informationally complete quantum measurements. J. Phys. A 39, 13507–13530 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Durt, T., Kurtsiefer, C., Lamas-Linares, A., Ling, A.: Wigner tomography of two-qubit states and quantum cryptography. Phys. Rev. A 78, 042338 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Zhu, H., Englert, B.-G.: Quantum state tomography with fully symmetric measurements and product measurements. Phys. Rev. A 84, 022327 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Zhu, H.: Quasiprobability representations of quantum mechanics with minimal negativity. arXiv:1604.06974
  10. 10.
    Fuchs, C.A., Schack, R.: Quantum-Bayesian coherence. Rev. Mod. Phys. 85, 1693–1715 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Fuchs, C.A., Stacey, B.C.: QBist quantum mechanics: quantum theory as a hero’s handbook. arXiv:1612.07308
  12. 12.
    Appleby, M., Fuchs, C.A., Stacey, B.C., Zhu, H.: Introducing the qplex: a novel arena for quantum theory. arXiv:1612.03234
  13. 13.
    Howard, S.D., Calderbank, A.R., Moran, W.: The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Signal Process. 2006, 1–11 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Malikiosis, R.-D.: Spark deficient Gabor frames. arXiv:1602.09012
  15. 15.
    Du, J., Sun, M., Peng, X., Durt, T.: Realization of entanglement assisted qubit-covariant symmetric informationally complete positive operator valued measurements. Phys. Rev. A 74, 042341 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Medendorp, Z.E.D., Torres-Ruiz, F.A., Shalm, L.K., Tabia, G.N.M., Fuchs, C.A., Steinberg, A.M.: Experimental characterization of qutrits using SIC-POVMs. Phys. Rev. A 83, 051801R (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Pimenta, W.M., Marques, B., Maciel, T.O., Vianna, R.O., Delgado, A., Saavedra, C., Pádua, S.: Minimum tomography of two entangled qutrits using local measurements of one-qutrit symmetric informationally complete positive operator-valued measure. Phys. Rev. A 88, 012112 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: A new computer study. J. Math. Phys. 51, 042203 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Appleby, M., Chien, T.-Y., Flammia, S., Waldron, S.: Constructing exact symmetric informationally complete measurements from numerical solutions (to appear)Google Scholar
  20. 20.
    Scott, A.J., Hoang, M.C., Fuchs, C., Stacey, B.C.: SICs: More numerical solutions (2017) (to appear)Google Scholar
  21. 21.
    Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3245 (1981)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. (NY) 176, 1–21 (1987)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Bengtsson, I.: The number behind the simplest SIC-POVM. arXiv:1611.09087
  24. 24.
    Appleby, D.M., Yadsan-Appleby, H., Zauner, G.: Galois automorphisms of a symmetric measurement. Quantum Inf. Comput. 13, 672–720 (2013)MathSciNetGoogle Scholar
  25. 25.
    Appleby, M., Flammia, S., McConnell, G., Yard, J.: Generating ray class fields of real quadratic fields via complex equiangular lines. arXiv:1604.06098
  26. 26.
    Kliuchnikov, V., Yard, J.: A framework for exact synthesis. arXiv:1504.04350
  27. 27.
    Ross, N.J., Selinger, P.: Optimal ancilla-free clifford+ t approximation of z-rotations. arXiv:1403.2975
  28. 28.
    Yard, J.: Quantum gates: Codes, compiling and arithmetic. Seminar talk, Perimeter Institute, June 2016. http://pirsa.org/16060049/
  29. 29.
    Hallgren, S.: Fast quantum algorithms for computing the unit group and class group of a number field. In: Proceedings of The Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 468–474 (2005)Google Scholar
  30. 30.
    Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. J ACM (JACM) 54(1), 1–19 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm for computing the unit group of an arbitrary degree number field. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 293–302. ACM (2014)Google Scholar
  32. 32.
    Appleby, D.M.: Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 46, 052107 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhu, H.: SIC-POVMs and Clifford groups in prime dimensions. J. Phys. A 43, 305305 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Hoggar, S.G.: 64 lines from a quaternionic polytope. Geom. Dedicata 69, 287–289 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhu, H.: Super-symmetric informationally complete measurements. Ann. Phys. (NY) 362, 311–326 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Stacey, B.C.: Sporadic SICs and the normed division algebras. arXiv:1605.01426
  37. 37.
    Appleby, D.M.: Properties of the extended Clifford group with applications to SIC-POVMs and MUBs. arXiv:0909.5233
  38. 38.
    Zhu, H.: Mutually unbiased bases as minimal Clifford covariant 2-designs. Phys. Rev. A 91, 060301 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Roman, S.: Field Theory. Graduate Texts in Mathematics, vol. 158. Springer, New York (2005)Google Scholar
  40. 40.
    Cohn, H.: A Classical Invitation to Algebraic Numbers and Class Fields. With Two Appendices by Olga Taussky. Springer, New York (1978)CrossRefzbMATHGoogle Scholar
  41. 41.
    Vlǎduţ, S.G.: Kronecker’s Jugendtraum and Modular Functions. Gordon and Breach (1991)Google Scholar
  42. 42.
    Cox, D.A.: Primes of the Form \(x^2+n y^2\). Fermat, Class Field Theory, and Complex Multiplication. Wiley Interscience, New York (1989)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Centre for Engineered Quantum Systems, School of PhysicsUniversity of SydneySydneyAustralia
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Controlled Dynamics Theory GroupImperial CollegeLondonUK
  4. 4.Institute for Quantum Computing, Dept. of Combinatorics and OptimizationUniversity of Waterloo and Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations