Skip to main content
Log in

Abstract

We give an overview of some remarkable connections between symmetric informationally complete measurements (SIC-POVMs, or SICs) and algebraic number theory, in particular, a connection with Hilbert’s 12th problem. The paper is meant to be intelligible to a physicist who has no prior knowledge of either Galois theory or algebraic number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. This is not the sense of the word as it is used in quantum field theory, to refer to a symmetry relating bosons and fermions, or in what is usually meant by supersymmetric quantum mechanics.

  2. There are actually four ray-class fields over \(\mathbb {Q}(\sqrt{D})\) whose conductors have finite part \(d'\). The SIC field \(\mathbb {E}\) generated by a minimal multiplet is the largest of these fields; specifically, the one with ramification allowed at both infinite places. The other three are subfields of \(\mathbb {E}\), and they also play a role in the theory. In particular, the field \(\mathbb {E}_1\) defined earlier is a ray-class field.

References

  1. Zauner, G.: Quantendesigns. Grundzüge einer nichtkommutativen designtheorie. PhD thesis, University of Vienna, 1999. Published in English translation: G. Zauner, “Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf. 9: 445–508 (2011)

  2. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Fuchs, C.A., Sasaki, M.: Squeezing quantum information through a classical channel: measuring the quantumness of a set of quantum states. Quantum Inf. Comput. 3, 377–404 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Řeháček, J., Englert, B.-G., Kaszlikowski, D.: Minimal qubit tomography. Phys. Rev. A 70, 052321 (2004)

    Article  ADS  Google Scholar 

  5. Englert, B.-G., Kaszlikowski, D., Ng, H.K., Chua, W.K., Řeháček, J., Anders, J.: Efficient and robust quantum key distribution with minimal state tomography. quant-ph/0412075

  6. Scott, A.J.: Tight informationally complete quantum measurements. J. Phys. A 39, 13507–13530 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Durt, T., Kurtsiefer, C., Lamas-Linares, A., Ling, A.: Wigner tomography of two-qubit states and quantum cryptography. Phys. Rev. A 78, 042338 (2008)

    Article  ADS  Google Scholar 

  8. Zhu, H., Englert, B.-G.: Quantum state tomography with fully symmetric measurements and product measurements. Phys. Rev. A 84, 022327 (2011)

    Article  ADS  Google Scholar 

  9. Zhu, H.: Quasiprobability representations of quantum mechanics with minimal negativity. arXiv:1604.06974

  10. Fuchs, C.A., Schack, R.: Quantum-Bayesian coherence. Rev. Mod. Phys. 85, 1693–1715 (2013)

    Article  ADS  Google Scholar 

  11. Fuchs, C.A., Stacey, B.C.: QBist quantum mechanics: quantum theory as a hero’s handbook. arXiv:1612.07308

  12. Appleby, M., Fuchs, C.A., Stacey, B.C., Zhu, H.: Introducing the qplex: a novel arena for quantum theory. arXiv:1612.03234

  13. Howard, S.D., Calderbank, A.R., Moran, W.: The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Signal Process. 2006, 1–11 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Malikiosis, R.-D.: Spark deficient Gabor frames. arXiv:1602.09012

  15. Du, J., Sun, M., Peng, X., Durt, T.: Realization of entanglement assisted qubit-covariant symmetric informationally complete positive operator valued measurements. Phys. Rev. A 74, 042341 (2006)

    Article  ADS  Google Scholar 

  16. Medendorp, Z.E.D., Torres-Ruiz, F.A., Shalm, L.K., Tabia, G.N.M., Fuchs, C.A., Steinberg, A.M.: Experimental characterization of qutrits using SIC-POVMs. Phys. Rev. A 83, 051801R (2011)

    Article  ADS  Google Scholar 

  17. Pimenta, W.M., Marques, B., Maciel, T.O., Vianna, R.O., Delgado, A., Saavedra, C., Pádua, S.: Minimum tomography of two entangled qutrits using local measurements of one-qutrit symmetric informationally complete positive operator-valued measure. Phys. Rev. A 88, 012112 (2013)

    Article  ADS  Google Scholar 

  18. Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: A new computer study. J. Math. Phys. 51, 042203 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Appleby, M., Chien, T.-Y., Flammia, S., Waldron, S.: Constructing exact symmetric informationally complete measurements from numerical solutions (to appear)

  20. Scott, A.J., Hoang, M.C., Fuchs, C., Stacey, B.C.: SICs: More numerical solutions (2017) (to appear)

  21. Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3245 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. (NY) 176, 1–21 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bengtsson, I.: The number behind the simplest SIC-POVM. arXiv:1611.09087

  24. Appleby, D.M., Yadsan-Appleby, H., Zauner, G.: Galois automorphisms of a symmetric measurement. Quantum Inf. Comput. 13, 672–720 (2013)

    MathSciNet  Google Scholar 

  25. Appleby, M., Flammia, S., McConnell, G., Yard, J.: Generating ray class fields of real quadratic fields via complex equiangular lines. arXiv:1604.06098

  26. Kliuchnikov, V., Yard, J.: A framework for exact synthesis. arXiv:1504.04350

  27. Ross, N.J., Selinger, P.: Optimal ancilla-free clifford+ t approximation of z-rotations. arXiv:1403.2975

  28. Yard, J.: Quantum gates: Codes, compiling and arithmetic. Seminar talk, Perimeter Institute, June 2016. http://pirsa.org/16060049/

  29. Hallgren, S.: Fast quantum algorithms for computing the unit group and class group of a number field. In: Proceedings of The Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 468–474 (2005)

  30. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. J ACM (JACM) 54(1), 1–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm for computing the unit group of an arbitrary degree number field. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 293–302. ACM (2014)

  32. Appleby, D.M.: Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 46, 052107 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zhu, H.: SIC-POVMs and Clifford groups in prime dimensions. J. Phys. A 43, 305305 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hoggar, S.G.: 64 lines from a quaternionic polytope. Geom. Dedicata 69, 287–289 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, H.: Super-symmetric informationally complete measurements. Ann. Phys. (NY) 362, 311–326 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Stacey, B.C.: Sporadic SICs and the normed division algebras. arXiv:1605.01426

  37. Appleby, D.M.: Properties of the extended Clifford group with applications to SIC-POVMs and MUBs. arXiv:0909.5233

  38. Zhu, H.: Mutually unbiased bases as minimal Clifford covariant 2-designs. Phys. Rev. A 91, 060301 (2015)

    Article  ADS  Google Scholar 

  39. Roman, S.: Field Theory. Graduate Texts in Mathematics, vol. 158. Springer, New York (2005)

    Google Scholar 

  40. Cohn, H.: A Classical Invitation to Algebraic Numbers and Class Fields. With Two Appendices by Olga Taussky. Springer, New York (1978)

    Book  MATH  Google Scholar 

  41. Vlǎduţ, S.G.: Kronecker’s Jugendtraum and Modular Functions. Gordon and Breach (1991)

  42. Cox, D.A.: Primes of the Form \(x^2+n y^2\). Fermat, Class Field Theory, and Complex Multiplication. Wiley Interscience, New York (1989)

    Google Scholar 

Download references

Acknowledgements

We are grateful to John Coates, Brian Conrad, Steve Donnelly, James McKee, Andrew Scott, and Chris Smyth for many useful comments and discussions. This research was supported in part by the Australian Research Council via EQuS project number CE11001013, and in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science. SF acknowledges support from an Australian Research Council Future Fellowship FT130101744 and JY acknowledges support from National Science Foundation Grant No. 116143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Appleby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appleby, M., Flammia, S., McConnell, G. et al. SICs and Algebraic Number Theory. Found Phys 47, 1042–1059 (2017). https://doi.org/10.1007/s10701-017-0090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0090-7

Keywords

Navigation