Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature (London) 121, 580 (1928)
ADS
Article
MATH
Google Scholar
Einstein, A.: On the development of our views concerning the nature and constitution of radiation. Phys. Z. 10, 817 (1909)
Google Scholar
Einstein, A., Infeld, L.: The Evolution of Physics: From Early Concepts to Relativity and Quanta. The Cambridge University Press, Cambridge (1937)
MATH
Google Scholar
Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1995)
MATH
Google Scholar
De-Broglie, L.: Recherches sur la théorie des quanta(Research on the Theory of the Quanta). Ph.D. thesis, Migration-université en cours d’affectation (1924)
De-Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement (Wave mechanics and the atomic structure of matter and radiation). J. Phys. Radium 8, 225 (1927)
Article
MATH
Google Scholar
Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009)
Book
MATH
Google Scholar
Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden ‘variables. 1’. Phys. Rev. 85, 166 (1952)
ADS
MathSciNet
Article
MATH
Google Scholar
Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170 (2011)
ADS
Article
MATH
Google Scholar
Floyd, E.R.: Welcher weg? A trajectory representation of a quantum youngs diffraction experiment. Found. Phys. 37, 1403 (2007)
ADS
Article
MATH
Google Scholar
John, M.V.: Modified de Broglie-Bohm approach to quantum mechanics. Found. Phys. Lett. (1988–2006), 15, 329 (2002)
John, M.V.: Probability and complex quantum trajectories. Ann. Phys. 324, 220 (2009)
ADS
MathSciNet
Article
MATH
Google Scholar
John, M.V.: Probability and complex quantum trajectories: Finding the missing links. Ann. Phys. 325, 2132 (2010)
ADS
MathSciNet
Article
MATH
Google Scholar
John, M.V., Mathew, K.: Coherent states and modified de Broglie-Bohm complex quantum trajectories. Found. Phys. 43, 859 (2013)
ADS
MathSciNet
Article
MATH
Google Scholar
Mathew, K., John, M.V.: Tunneling in energy eigenstates and complex quantum trajectories. Quantum Stud. 2, 403 (2015)
MathSciNet
Article
MATH
Google Scholar
Dürr, D., Goldstein, S., Zanghi, N.J.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843 (1992)
ADS
MathSciNet
Article
MATH
Google Scholar
Carroll, R.: Quantum Theory, Deformation and Integrability. Elsevier, Amsterdam (2000)
MATH
Google Scholar
Chou, C.C., Wyatt, R.E.: Quantum trajectories in complex space. Phys. Rev. A 76, 012115 (2007)
ADS
Article
Google Scholar
Chou, C.C., Wyatt, R.E.: Quantum trajectories in complex space: One-dimensional stationary scattering problems. J. Chem. Phys. 128, 154106 (2008)
ADS
Article
Google Scholar
Kolasiński, K., Szafran, B.: Electron paths and double-slit interference in the scanning gate microscopy. N. J. Phys. 17, 063003 (2015)
Article
Google Scholar
Jönsson, C.: Electron diffraction at multiple slits. Am. J. Phys. 42, 4 (1974)
ADS
Article
Google Scholar
Gondran, M., Gondran, A.: Measurement in the de Broglie-Bohm interpretation: double-slit, stern-gerlach, and EPR-B. Phys. Res. Int. 2014, 1 (2014)
Article
Google Scholar
Mahler, D.H., Rozema, L., Fisher, K., Vermeyden, L., Resch, K.J., Wiseman, H.M., Steinberg, A.: Experimental nonlocal and surreal Bohmian trajectories. Sci. Adv. 2, e1501466 (2016)
ADS
Article
Google Scholar
Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 1. Addison-Wesley, Boston (1964)
MATH
Google Scholar
Philippidis, C., Dewdney, C., Hiley, B.: Quantum interference and the quantum potential. Il Nuov. Cim. B (1971-1996), 52, 15 (1979)
Luis, A., Sanz, Á.S.: What dynamics can be expected for mixed states in two-slit experiments? Ann. Phys. 357, 95 (2015)
ADS
Article
MATH
Google Scholar
Sanz, Á.S.: Investigating puzzling aspects of the quantum theory by means of its hydrodynamic formulation. Found. Phys. 45, 1153 (2015)
ADS
MathSciNet
Article
MATH
Google Scholar
Davidović, M., Sanz, Á.S., Božić, M.: Description of classical and quantum interference in view of the concept of flow line. J. Russ. Laser Res. 36, 329 (2015)
Article
Google Scholar
Sanz, Á.S., Miret-Artés, S.: A trajectory-based understanding of quantum interference. J. Phys. A 41, 435303 (2008)
ADS
MathSciNet
Article
MATH
Google Scholar
Ghose, P.: On the incompatibility of standard quantum mechanics and conventional de Broglie-Bohm theory. Pramana-J. Phys. 59, 417 (2002)
ADS
Article
Google Scholar
Floyd, E.R.: Modified potential and Bohm’s quantum-mechanical potential. Phys. Rev. D 26, 1339 (1982)
ADS
Article
Google Scholar