Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1, 195–200 (1964)
Google Scholar
Bell, J.S.: On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 38, 447–452 (1966)
ADS
MathSciNet
Article
MATH
Google Scholar
Bell, J.S.: La Nouvelle Cuisine. Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004)
Book
Google Scholar
Loubenets, E.R.: “Local Realism”, Bell’s Theorem and Quantum “Locally Realistic” Inequalities. Found. Phys. 35, 2051–2072 (2005)
ADS
MathSciNet
Article
MATH
Google Scholar
Loubenets, E.R.: On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site. J. Phys. A 41, 445303 (2008)
ADS
MathSciNet
Article
MATH
Google Scholar
Loubenets, E.R.: Local quasi hidden variable modelling and violations of Bell-type inequalities by a multipartite quantum state. J. Math. Phys. 53, 022201 (2012)
ADS
MathSciNet
Article
MATH
Google Scholar
Loubenets, E.R.: Context-invariant and local quasi hidden variable (qHV) modelling versus contextual and nonlocal HV modelling. Found. Phys. 45, 840–850 (2015)
ADS
MathSciNet
Article
MATH
Google Scholar
Loubenets, E.R.: On the existence of a local quasi hidden variable (LqHV) model for each N-qudit state and the maximal quantum violation of Bell inequalities. J. Quantum Inf. 14, 1640010 (2016)
MathSciNet
Article
MATH
Google Scholar
Khrennikov, A.: Interpretations of Probability, 2nd edn. De Gruyter, Berlin (2009)
Book
MATH
Google Scholar
Khrennikov, A.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009)
Book
MATH
Google Scholar
Khrennikov, A.: Bell argument: locality or realism? Time to make the choice. AIP Conf. Proc. 1424, 160–175 (2012)
ADS
Article
MATH
Google Scholar
Gisin, N.: Quantum Chance. Nonlocality, Teleportation and Other Quantum Marvels. Springer, Cham (2014)
D’Ariano, G.M., Jaeger, G., Khrennikov, A., Plotnitsky, A.: Preface of the special issue on quantum theory: advances and problems. Phys. Scr. 163, 010301–014034 (2014)
Article
Google Scholar
Khrennikov, A., de Raedt, H., Plotnitsky, A., and Polyakov, S.: Preface of the special issue probing the limits of quantum mechanics: theory and experiment, vol. 1. Found. Phys. 45(7), 707–710 (2015)
Loubenets, E.R.: Multipartite Bell-type inequalities for arbitrary numbers of settings and outcomes per site. J. Phys. A 41, 445304 (2008)
ADS
MathSciNet
Article
MATH
Google Scholar
Terhal, B.M., Doherty, A.C., Schwab, D.: Symmetric extensions of quantum states and local hidden variable theories. Phys. Rev. Lett. 90, 157903 (2003)
ADS
MathSciNet
Article
MATH
Google Scholar
Loubenets, E.R.: Quantum states satisfying classical probability constraints. Banach Center Publ. 73, 325–337 (2006)
Loubenets, E.R.: Class of bipartite quantum states satisfying the original Bell inequality. J. Phys. A 38, L653–L658 (2005)
ADS
MathSciNet
Article
MATH
Google Scholar
Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)
ADS
MathSciNet
Article
Google Scholar
Tsirelson, B.S.: Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Sov. Math. 36, 557–570 (1987)
Article
Google Scholar
Werner, R.F., Wolf, M.M.: All multipartite Bell correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)
ADS
Article
Google Scholar
Scarani, V., Gisin, N.: Spectral decomposition of Bell’s operators for qubits. J. Phys. A 34, 6043–6053 (2001)
ADS
MathSciNet
Article
MATH
Google Scholar
Junge, M., Palazuelos, C., Perez-Garcia, D., Villanueva, I., Wolf, M.M.: Unbounded violations of bipartite Bell Inequalities via operator space theory. Commun. Math. Phys. 300, 715–739 (2010)
ADS
MathSciNet
Article
MATH
Google Scholar
Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Comm. Math. Phys. 306, 695–746 (2011)
ADS
MathSciNet
Article
MATH
Google Scholar
Palazuelos, C.: On the largest Bell violation attainable by a quantum state. J. Funct. Anal. 267, 1959–1985 (2014)
MathSciNet
Article
MATH
Google Scholar
Palazuelos, C., Vidick, T.: Survey on nonlocal games and operator space theory. J. Math. Phys. 57, 015220 (2016)
ADS
MathSciNet
Article
MATH
Google Scholar
Junge, M., Oikhberg, T., Palazuelos, C.: Reducing the number of questions in nonlocal games. J. Math. Phys. 57(10), 102203 (2016)
ADS
MathSciNet
Article
MATH
Google Scholar
Loubenets, E.R.: New concise upper bounds on quantum violation of general multipartite Bell inequalities. arXiv:1612.01499 (2016)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)
ADS
Article
MATH
Google Scholar
Loubenets, E.R.: Nonsignaling as the consistency condition for local quasi-classical probability modeling of a general multipartite correlation scenario. J. Phys. A 45, 185306 (2012)
ADS
MathSciNet
Article
MATH
Google Scholar
Loubenets, E.R.: Context-invariant quasi hidden variable (qHV) modelling of all joint von Neumann measurements for an arbitrary Hilbert space. J. Math. Phys. 56, 032201 (2015)
ADS
MathSciNet
Article
MATH
Google Scholar
Zohren, S., Gill, R.D.: Maximal violation of the Collins-Gisin-Linden-Massar-Popescu Inequality for infinite dimensional states. Phys. Rev. Lett. 100, 120406 (2008)
ADS
Article
Google Scholar
Froissart, M.: Constructive generalization of Bell’s inequalities. Il Nuovo Cimento B 64, 241–251 (1981)
ADS
MathSciNet
Article
Google Scholar
Barrett, J., Collins, D., Hardy, L., Kent, A., Popescu, S.: Quantum nonlocality, Bell inequalities and the memory loophole. Phys. Rev. A 66, 042111 (2002)
ADS
Article
Google Scholar
Brunner, N., Gisin, N.: Partial list of bipartite Bell inequalities with four binary settings. Phys. Lett. A 372, 3162–3167 (2008)
ADS
MathSciNet
Article
MATH
Google Scholar
Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity of non-signaling distributions. Lect. Notes Comput. Sci. 5734, 270–281 (2009)
ADS
MathSciNet
Article
MATH
Google Scholar
Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin: Springer, 1933); English translation: Foundations of the Theory of Probability. Chelsea, New York (1950)