Tests and Problems of the Standard Model in Cosmology


The main foundations of the standard \(\Lambda \)CDM model of cosmology are that: (1) the redshifts of the galaxies are due to the expansion of the Universe plus peculiar motions; (2) the cosmic microwave background radiation and its anisotropies derive from the high energy primordial Universe when matter and radiation became decoupled; (3) the abundance pattern of the light elements is explained in terms of primordial nucleosynthesis; and (4) the formation and evolution of galaxies can be explained only in terms of gravitation within a inflation + dark matter + dark energy scenario. Numerous tests have been carried out on these ideas and, although the standard model works pretty well in fitting many observations, there are also many data that present apparent caveats to be understood with it. In this paper, I offer a review of these tests and problems, as well as some examples of alternative models.

This is a preview of subscription content, access via your institution.


  1. 1.

    This has indeed not been found yet, since the measurements of the cross-correlation of CMBR maps with galaxy surveys are not significant; see Ref. [188] and references therein.

  2. 2.

    For instance, the number of (CMBR) photons is much (\(10^9\) times) higher than the number of cosmic baryons, thus indicating that cosmic evolution violates baryon number conservation; a heavy baryon–antibaryon annihilation? Curiously, the CMBR photon density implies that the mean distance of photons is 0.2 cm, which, to the surprise of some, is just about identical to the maximum wavelength of the CMBR black body emission [194].

  3. 3.

    Plus many other parameters which introduce second-order changes. And, even so, there is a degeneracy in the solutions with different values of \(H_0\) and \(\Omega _\Lambda \): CMBR data, and the large scale structure of galaxies could be reproduced without explicitly requesting the existence of dark energy [209] i.e. with \(\Lambda =0\). This degeneracy is broken by adding cosmological information from other sources, for instance, from SNIa data. In order to fit the temperature–polarization cross power spectrum and the polarization–polarization power spectrum [208], one would need an extra parameter (optical depth), so a total of at least seven free parameters are necessary. Roughly speaking, the relationship between temperature-temperature and the polarization–temperature, or polarization–polarization power spectra is expected since they are different ways of seeing the same light with different filters.


  1. 1.

    López-Corredoira, M.: Non-standard models and the sociology of cosmology. Stud. Hist. Philos. Mod. Phys. 46, 86–96 (2014)

    MATH  Article  Google Scholar 

  2. 2.

    Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. In: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pp. 142–152. Berlin (1917)

  3. 3.

    Narlikar, J.V., Arp, H.C.: Flat spacetime cosmology: a unified framework for extragalactic redshifts. Astrophys. J. 405, 51–56 (1993)

    ADS  Article  Google Scholar 

  4. 4.

    Boehmer, C.G., Hollenstein, L., Lobo, F.S.N.: Stability of the Einstein static universe in f(R) gravity. Phys. Rev. D 76, 084005 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Van Flandern, T.: Is the gravitational constant changing? In: Taylor, B.N., Phillips, W.D. (eds.) Precision Measurements and Fundamental Constants II, vol. 617, pp. 625–627. National Bureau of Standards Special Publication, Washington, DC (1984)

    Google Scholar 

  6. 6.

    Troitskii, V.S.: Physical constants and evolution of the universe. Astrophys. Space Sci. 139, 389–411 (1987)

    ADS  Article  Google Scholar 

  7. 7.

    Van Flandern, T.: Dark Matter, Missing Planets and New Comets. North Atlantic Books, Berkeley (1993)

    Google Scholar 

  8. 8.

    Francis, M.J., Barnes, L.A., James, J.B., Lewis, G.F.: Expanding space: the root of all evil? Publ. Astron. Soc. Aust. 24, 95–102 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    Baryshev, YuV: Expanding space: the root of conceptual problems of the cosmological physics. In: Baryshev, YuV, Taganov, I.N., Teerikorpi, P. (eds.) Practical Cosmology, 1, pp. 20–30. TIN, St.-Petersburg (2008)

    Google Scholar 

  10. 10.

    Feynman, R.P., Morinigo, F.B., Wagner, W.G.: Feynman Lectures on Gravitation. Addison-Wesley, Reading, MA (1995)

    Google Scholar 

  11. 11.

    Baryshev, YuV: Field fractal cosmological model as an example of practical cosmology approach. In: Baryshev, YuV, Taganov, I.N., Teerikorpi, P. (eds.) Practical Cosmology, 1, pp. 60–67. TIN, St.-Petersburg (2008)

    Google Scholar 

  12. 12.

    Bondi, H.: Cosmology, 2nd edn. Cambridge University Press, London (1961)

    Google Scholar 

  13. 13.

    Lemaître, G.: Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. A47, 49–59 (1927) (Translated into English in: Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. R. Astron. Soc. 91, 483–490 (1931))

  14. 14.

    Hubble, E.P.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15, 168–173 (1929)

    ADS  MATH  Article  Google Scholar 

  15. 15.

    Narlikar, J.V.: Noncosmological redshifts. Space Sci. Rev. 50, 523–614 (1989)

    ADS  Article  Google Scholar 

  16. 16.

    Baryshev, YuV, Labini, F.S., Montuori, M., Pietronero, L.: Facts and ideas in modern cosmology. Vistas Astron. 38, 419–500 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Reboul, H.J.: Untrivial redshifts: a bibliographical catalogue. Astron. Astrophys. Supp. Ser. 45, 129–144 (1981)

    ADS  Google Scholar 

  18. 18.

    Zwicky, F.: On the red shift of spectral lines through interstellar space. Proc. Natl. Acad. Sci. 15, 773–779 (1929)

    ADS  MATH  Article  Google Scholar 

  19. 19.

    Zwicky, F.: Morphological Astronomy. Springer, Berlin (1957)

    Google Scholar 

  20. 20.

    Steinbring, E.: Are high-redshift quasars blurry? Astrophys. J. 655, 714–717 (2007)

    ADS  Article  Google Scholar 

  21. 21.

    Roberts, M.S.: The gaseous content of galaxies (survey Lecture). In: Evans, D.S. (ed.) External Galaxies and Quasi-Stellar Objects (IAU Symp. 44), p. 12. Reidel, Dordrecht (1972)

  22. 22.

    Baryshev, YuV, Teerikorpi, P.: Fundamental Questions of Practical Cosmology. Springer, Dordrecht (2012)

    Google Scholar 

  23. 23.

    Vigier, J.P.: Alternative interpretation of the cosmological redshift in terms of vacuum gravitational drag. In: Bertola, F., Madore, B., Sulentic, J. (eds.) New Ideas in Astronomy, pp. 257–274. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  24. 24.

    Gallo, C.: A new red shift mechanism with possible applications to astrophysical problems such as quasars. Int. J. Theor. Phys. 13, 417–418 (1975)

    Article  Google Scholar 

  25. 25.

    Moret-Bailly, J.: The parametric light-matter interactions in astrophysics. In: Lerner, E.J., Almeida, J.B. (eds.), 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 226–238. AIP, Melville (2006)

  26. 26.

    Varshni, Y.P.: The physics of quasars. Phys. Can. 35, 11–17 (1979)

    Google Scholar 

  27. 27.

    Laio, A., Rizzi, G., Tartaglia, A.: Quantum theory of frequency shifts of an electromagnetic wave interacting with a plasma. Phys. Rev. E 55, 7457–7461 (1997)

    ADS  Article  Google Scholar 

  28. 28.

    Lerner, E.J.: The Big Bang Never Happened: A Startling Refutation of the Dominant Theory of the Origin of the Universe. Random House, Toronto (1991)

    Google Scholar 

  29. 29.

    Brynjolfsson, A.: Redshift of photons penetrating a hot plasma. arXiv:astro-ph/0401420 (2004)

  30. 30.

    Ashmore, L.: Intrinsic plasma redshifts now reproduced in the laboratory—a discussion in terms of new tired light. viXra.org: 1105.0010 (2011)

  31. 31.

    Weidner, H.: The size and energy loss of a wave packet. viXra.org:1408.0139 (2014)

  32. 32.

    Mamas, D.L.: An explanation for the cosmological redshift. Phys. Essays 23, 326–329 (2010)

    ADS  Article  Google Scholar 

  33. 33.

    Wolf, E.: Invariance of the spectrum of light on propagation. Phys. Rev. Lett. 56, 1370–1372 (1986)

    ADS  Article  Google Scholar 

  34. 34.

    Roy, S., Kafatos, M., Datta, S.: Shift of spectral lines due to dynamic multiple scattering and screening effect: implications for discordant redshifts. Astron. Astrophys. 353, 1134–1138 (2000)

    ADS  Google Scholar 

  35. 35.

    Joos, C., Lutz, J.: Quantum redshift. Paper presented at the Crisis in Cosmology Conference-I, Moncao, Portugal 23–25 June (2005)

  36. 36.

    Crawford, D.: Curvature Cosmology. BrownWalker Press, Boca Raton (2006)

    Google Scholar 

  37. 37.

    Crawford, D.: Observational evidence favors a static universe (part I). J. Cosmol. 13, 3875–3946 (2011)

    ADS  Google Scholar 

  38. 38.

    Crawford, D.: Observational evidence favors a static universe (part III). J. Cosmol. 13, 4000–4057 (2011)

    Google Scholar 

  39. 39.

    Bondi, H.: Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 107, 410–425 (1947)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Baryshev, YuV: Hierarchical structure of metagalaxy—problem review. Astrofiz. Issled. Izv. Spetsial’noj Astrofiz. Observ. 14, 24 (1981)

    ADS  Google Scholar 

  41. 41.

    Baryshev, YuV: On the fractal nature of the large-scale structure of the universe. Astron. Astrophys. Trans. 5, 15–23 (1994)

    ADS  Article  Google Scholar 

  42. 42.

    Broberg, H.: The geometry of acceleration in space-time: application to the gravitational field and particles. In: Rudnicki, K. (ed.) Gravitation, Electromagnetism and Cosmology: Toward a New Synthesis. Apeiron, Montreal (2001)

    Google Scholar 

  43. 43.

    Nesvizhevsky, V.V., Börner, H.G., Petukhov, A.K., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002)

    ADS  Article  Google Scholar 

  44. 44.

    Ghosh, A.: Velocity dependent inertial induction: a possible mechanism for cosmological red shift in a quasi static infinite universe. J. Astrophys. Astron. 18, 449–454 (1997)

    ADS  Article  Google Scholar 

  45. 45.

    Barber, G.: A new self creation cosmology. Astrophys. Space Sci. 282, 683–730 (2002)

    ADS  Article  Google Scholar 

  46. 46.

    Barber, G.: The principles of self creation cosmology and its comparison with general relativity. arXiv:gr-qc/0212111 (2002)

  47. 47.

    Barber, G.: Resolving the degeneracy: experimental tests of the new self creation cosmology and a heterodox prediction for gravity probe B. Astrophys. Space Sci. 305, 169–176 (2006)

    ADS  Article  Google Scholar 

  48. 48.

    Barber, G.: The derivation of the coupling constant in the new self creation cosmology. arXiv:gr-qc/0302088 (2003)

  49. 49.

    Fischer, E.: Homogeneous cosmological solutions of the Einstein equation. Astrophys. Space Sci. 325, 69–74 (2010)

    ADS  Article  Google Scholar 

  50. 50.

    Bouvier, P., Maeder, A.: Consistency of Weyl’s geometry as a framework for gravitation. Astrophys. Space Sci. 54, 497–508 (1978)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Lunsford, D.R.: Gravitation and electrodynamics over SO(3,3). Int. J. Theor. Phys. 43, 161–177 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Krasnov, K., Shtanov, Y.: Non-metric gravity: II. Spherically symmetric solution, missing mass and redshifts of quasars. Class. Quantum Gravity 25, 025002 (2008)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Castro, C.: On dark energy, Weyl geometry and Brans-Dicke-Jordan scalar field. viXra.org: 0901.0001 (2009)

  54. 54.

    Ivanov, M.A.: Another origin of cosmological redshifts. arXiv:astro-ph/0405083 (2004)

  55. 55.

    Ivanov, M.A.: Low-energy quantum gravity leads to another picture of the universe In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 187–199. AIP, Melville (2006)

  56. 56.

    Roscoe, D.: Maxwells equations: new light on old problems. Apeiron 13, 206–239 (2006)

    ADS  Google Scholar 

  57. 57.

    Mosquera Cuesta, H.J., Salim, J.M., Novello,M.: Cosmological redshift and nonlinear electrodynamics propagation of photons from distant sources. arXiv:0710.5188 (2007)

  58. 58.

    Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. II. Dover, New York (1954)

    Google Scholar 

  59. 59.

    Monti, R.: The electric conductivity of background space. In: Kostro, L., Posiewnik, A., Pykacz, J., Zukowski, M. (eds.) Problems in Quantum Physics, Gdansky 87—Recent and Future Experiments and Interpretations, p. 640. World Scientific, Singapore (1988)

    Google Scholar 

  60. 60.

    von Nernst, W.: The Structure of the Universe in Light of our Research. Jules Springer, Berlin (1921)

    Google Scholar 

  61. 61.

    Alfonso-Faus, A.: Mass-boom versus big-bang: an alternative model. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 107–109. AIP, Melville (2006)

  62. 62.

    Alfonso-Faus, A.: The case for a non-expanding universe. arXiv:0908.1539 (2009)

  63. 63.

    Urbanowski, K.: On a possible quantum contribution to the red shift. In: Baryshev, YuV, Taganov, I.N., Teerikorpi, P. (eds.) Practical Cosmology, 1, pp. 117–122. TIN, St.-Petersburg (2008)

    Google Scholar 

  64. 64.

    Segal, I.E.: Mathematical Cosmology and Extragalactic Astronomy. Academic Press, New York (1976)

    Google Scholar 

  65. 65.

    Segal, I.E., Zhou, Z.: Maxwell’s equations in the Einstein universe and chronometric cosmology. Astrophys. J. Supp. Ser. 100, 307–324 (1995)

    ADS  Article  Google Scholar 

  66. 66.

    Hoyle, F., Narlikar, J.V.: A new theory of gravitation. Proc. R. Soc. London A282, 191–207 (1964)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. 67.

    Narlikar, J.V.: Two astrophysical applications of conformal gravity. Ann. Phys. 107, 325–336 (1977)

    ADS  Article  Google Scholar 

  68. 68.

    Garaimov, V.I.: Time and entropy. In: Holt, S.S., Reynolds, C. S. (eds.) The emergence of cosmic structure (AIP Conf. Proc. 666), pp. 361–364. AIP, Melville (2003)

  69. 69.

    Chen, C.S., Zhou, X.L., Man, B.Y., Zhang, Y.Q., Guo, J.: Investigation of the mechanism of spectral emission and redshifts of atomic line in laser-induced plasmas. Optik 120, 473–478 (2009)

    ADS  Article  Google Scholar 

  70. 70.

    Nguyen, H., Koenig, M., Benredjem, D., Caby, M., Coulaud, G.: Atomic structure and polarization line shift in dense and hot plasmas. Phys. Rev. A 33(2), 1279–1290 (1986)

    ADS  Article  Google Scholar 

  71. 71.

    Mérat, P., Pecker, J.-C., Vigier, J.-P., Yourgrau, W.: Observed deflation of light by the sun as a function of solar distance. Astron. Astrophys. 32, 471–475 (1974)

    ADS  Google Scholar 

  72. 72.

    Mérat, P., Pecker, J.-C., Vigier, J.-P.: Possible interpretation of an anomalous redsbift observed on the 2292 MHz line emitted by pioneer-6 in the close vicinity of the solar limb. Astron. Astrophys. 30, 167–174 (1974)

    ADS  Google Scholar 

  73. 73.

    Marmet, P.: Red shift of spectral lines in the sun’s chromosphere. IEEE Trans. Plasma Sci. 17(2), 238–244 (1989)

    ADS  Article  Google Scholar 

  74. 74.

    Dravins, D.: Photospheric spectrum line asymmetries and wavelength shifts. Ann. Rev. Astron. Astrophys. 20, 61–89 (1982)

    ADS  Article  Google Scholar 

  75. 75.

    Sandage, A.: The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136, 319–333 (1962)

    ADS  Article  Google Scholar 

  76. 76.

    Liske, J., Grazian, A., Vanzella, E., et al.: Cosmic dynamics in the era of extremely large telescopes. Mon. Not. R. Astron. Soc. 386, 1192–1218 (2008)

    ADS  Article  Google Scholar 

  77. 77.

    Molaro, P., Levshakov, S.A., Dessauges-Zavadsky, M., D’Odorico, S.: The cosmic microwave background radiation temperature at \(z_{{\rm abs}}=3.025\) toward QSO 0347–3819. Astron. Astrophys. 381, L64–L67 (2002)

    ADS  Article  Google Scholar 

  78. 78.

    Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C., López, S.: The evolution of the cosmic microwave background temperature. Measurements of \(T_{\rm CMB}\) at high redshift from carbon monoxide excitation. Astron. Astrophys 526, L7 (2011)

    ADS  Article  Google Scholar 

  79. 79.

    Krelowski, J., Galazutdinov, G., Gnacinski, P.: CN rotational excitation. Astron. Nachrichten 333, 627–633 (2012)

    ADS  Article  Google Scholar 

  80. 80.

    Sato, M., Reid, M.J., Menten, K.M., Carilli, C.L.: On measuring the cosmic microwave background temperature at redshift 0.89. Astrophys. J. 764, 132 (2013)

    ADS  Article  Google Scholar 

  81. 81.

    Luzzi, G., Génova-Santos, R.T., Martins, C.J.A.P., De Petris, M., Lamagna, L.: Constraining the evolution of the CMB temperature with SZ measurements from Planck data. J. Cosmol. Astropart. Phys. 9, 011 (2015)

    ADS  Article  Google Scholar 

  82. 82.

    Goldhaber, G., Groom, D.E., Kim, A., et al.: Timescale stretch parameterization of type ia supernova B-band light curves. Astrophys. J. 558, 359–368 (2001)

    ADS  Article  Google Scholar 

  83. 83.

    Blondin, S., Davis, T.M., Krisciunas, K., et al.: Time dilation in type Ia supernova spectra at high redshift. Astrophys. J. 682, 724–736 (2008)

    ADS  Article  Google Scholar 

  84. 84.

    Nobili, S., Goobar, A.: The colour-lightcurve shape relation of type Ia supernovae and the reddening law. Astron. Astrophys. 487, 19–31 (2008)

    ADS  Article  Google Scholar 

  85. 85.

    Brynjolfsson, A.: Plasma redshift, time dilation, and supernovas Ia. arXiv:astro-ph/0406437 (2004)

  86. 86.

    Leaning, S.P.: New analysis of observed high redshift supernovae data show that a majority Of SN1a decay lightcurves can be shown to favourably compare with a non dilated restframe template. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 48–59. AIP, Melville (2006)

  87. 87.

    Ashmore, L.: Supernovae Ia light curves show a static universe. viXra.org: 1207.0015 (2012)

  88. 88.

    Holushko, H.: Tired light and type Ia supernovae observations. viXra.org: 1203.0062 (2012)

  89. 89.

    LaViolette, P.A.: Subquantum Kinetics: The Alchemy of Creation, 4th edn. Starlane Publication, Niskayana, NY (2012)

    Google Scholar 

  90. 90.

    Crawford, D.: No evidence of time dilation in gamma-ray burst data. arXiv:0901.4169 (2009)

  91. 91.

    Hawkins, M.R.S.: On time dilation in quasar light curves. Mon. Not. R. Astron. Soc. 405, 1940–1946 (2010)

    ADS  Google Scholar 

  92. 92.

    Dai, D.-C., Starkman, G.D., Stojkovic, B., Stojkovic, D., Weltman, A.: Using quasars as standard clocks for measuring cosmological redshift. Phys. Rev. Lett. 108, 231302 (2012)

    ADS  Article  Google Scholar 

  93. 93.

    Moresco, M., Cimatti, A., Jiménez, R., et al.: Improved constraints on the expansion rate of the Universe up to \(z\sim 1.1\) from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 8, 6 (2012)

    ADS  Article  Google Scholar 

  94. 94.

    Moresco, M., Pozzetti, L., Cimatti, A., et al.: A 6% measurement of the Hubble parameter at \(z\sim 0.45\): direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 5, 14 (2016)

  95. 95.

    López-Corredoira, M., Vazdekis, A., Gutiérrez, C.M., Castro-Rodríguez, N.: Stellar content of extremely red quiescent galaxies at \(z>2\). Astron. Astrophys. arXiv:1702.00380 (2017)

  96. 96.

    LaViolette, P.A.: Is the universe really expanding? Astrophys. J. 301, 544–553 (1986)

    ADS  Article  Google Scholar 

  97. 97.

    Kowalski, M., Rubin, D., Aldering, G., et al.: Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 686, 749–778 (2008)

    ADS  Article  Google Scholar 

  98. 98.

    Wei, H.: Observational constraints on cosmological models with the updated long gamma-ray bursts. J. Cosm. Astropart. Phys. 8, 20 (2010)

    ADS  Article  Google Scholar 

  99. 99.

    Balázs, L.G., Hetesi, Z., Regály, Z., Csizmadia, S., Bagoly, Z., Horváth, I., Mészáros, A.: A possible interrelation between the estimated luminosity distances and internal extinctions of type Ia supernovae. Astron. Nachr. 327, 917–924 (2006)

    ADS  Article  Google Scholar 

  100. 100.

    Podsiadlowski, P., Mazzali, P., Lesaffre, P., Han, Z., Förster, F.: The nuclear diversity of Type Ia supernova explosions. New Astron. Rev. 52, 381–385 (2008)

    ADS  Article  Google Scholar 

  101. 101.

    Bogomazov, A.I., Tutukov, A.V.: Type Ia supernovae: non-standard candles of the universe. Astron. Rep. 55, 497–504 (2011)

    ADS  Article  Google Scholar 

  102. 102.

    Sorrell, W.H.: Misconceptions about the Hubble recession law. Astrophys. Space Sci. 323, 205–211 (2009) (Erratum: Astrophys. Space Sci. 323, 213 (2009))

  103. 103.

    Lerner, E. J.: Tolman test from \(z=0.1\) to \(z=5.5\): preliminary results challenge the expanding universe model. In: Potter, F. (ed.) Second Crisis in Cosmology Conference (ASP Conf. Ser. 413), pp. 12–23. ASP, St. Francisco (2009)

  104. 104.

    López-Corredoira, M.: Angular-size test on the expansion of the Universe. Int. J. Mod. Phys. D 19, 245–291 (2010)

    ADS  MATH  Article  Google Scholar 

  105. 105.

    Farley, F.J.M.: Does gravity operate between galaxies? Observational evidence re-examined. Proc. R. Soc. A 466, 3089–3096 (2010)

    ADS  Article  Google Scholar 

  106. 106.

    Marosi, L.A.: Hubble diagram test of expanding and static cosmological models: the case for a slowly expanding flat universe. Adv. Astron. 2013, 917104 (2013)

  107. 107.

    Schwarz, D.J., Weinhorst, B.: (An)isotropy of the Hubble diagram: comparing hemispheres. Astron. Astrophys. 474, 717–729 (2007)

    ADS  Article  Google Scholar 

  108. 108.

    Hubble, E.P., Tolman, R.C.: Two methods of investigating the nature of the nebular redshift. Astrophys. J. 82, 302–337 (1935)

    ADS  MATH  Article  Google Scholar 

  109. 109.

    Lubin, L.M., Sandage, A.: The Tolman surface brightness test for the reality of the expansion. IV. A measurement of the Tolman signal and the luminosity evolution of early-type galaxies. Astron. J. 122, 1084–1103 (2001)

    ADS  Article  Google Scholar 

  110. 110.

    Lerner, E.J.: Evidence for a non-expanding universe: surface brightness data from HUDF. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 60–74. AIP, Melville (2006)

  111. 111.

    Andrews, T.B.: Falsification of the expanding universe model. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 3–22. AIP, Melville (2006)

  112. 112.

    Lerner, E.J., Falomo, R., Scarpa, R.: UV surface brightness of galaxies from the local Universe to \(z\sim 5\). Int. J. Mod. Phys. D 23, 1450058 (2014)

    ADS  Article  Google Scholar 

  113. 113.

    Hoyle, F.: The relation of radio astronomy to cosmology. In: Bracewell, R.N. (ed.) Radio Astronomy (IAU Symp. 9), pp. 529–533 (1959)

  114. 114.

    Kapahi, V.K.: The angular size-redshift relation as a cosmological tool. In: Hewitt, A., Burbidge, G., Fang, L.-Z. (eds.) Observational Cosmology (IAU Symp. 124), pp. 251–265. Reidel, Dordrecht (1987)

  115. 115.

    Andrews, T.B.: Derivation of the Hubble Redshift and the metric in a static universe. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 123–143. AIP, Melville (2006)

  116. 116.

    Nabokov, N.V., Baryshev, YuV: Classical cosmological tests for galaxies of the hubble ultra deep field. Astrophys. Bull. 63, 244–258 (2008)

    ADS  Article  Google Scholar 

  117. 117.

    Lerner, E.: Surface brightness of galaxies and the evidence against the concordance model. Paper presented at the observational anomalies challenging the Lambda-CDM cosmological model (Special Session 2, EWASS 2015), Tenerife, Spain 22 June 2015. http://www.iac.es/galeria/martinlc/EWASS2015/1339

  118. 118.

    Disney, M.J., Lang, R.H.: The galaxy ancestor problem. Mon. Not. R. Astron. Soc. 426, 1731–1749 (2012)

    ADS  Article  Google Scholar 

  119. 119.

    Valtonen, M., Nilsson, K., Kotilainen, J., Jaakkola, T.: Double radio sources as standard rods of testing cosmological models. In: Proceedings of the 25th Annual Conference of the Finnish Physical Society, Oulu University, Oulu (1991)

  120. 120.

    Nilsson, K., Valtonen, M.J., Kotilainen, J., Jaakkola, T.: On the redshift-apparent size diagram of double radio sources. Astrophys. J. 413, 453–476 (1993)

    ADS  Article  Google Scholar 

  121. 121.

    Pashchenko, I.N., Vitrishchak, V.M.: The use of ultra-compact radio sources for the angular size-redshift cosmological test. Astron. Rep. 55(4), 293–301 (2011)

    ADS  Article  Google Scholar 

  122. 122.

    Holanda, R.F.L., Goncalves, R.S., Alcaniz, J.S.: A test for cosmic distance duality. J. Cosmol. Astropart. Phys. 6, 22 (2012)

    ADS  Article  Google Scholar 

  123. 123.

    Totani, T., Yoshii, Y., Maihara, T., Iwamuro, F., Motohara, K.: Near-infrared faint galaxies in the subaru deep field: comparing the theory with observations for galaxy counts, colors, and size distributions to \(K\sim 24.5\). Astrophys. J. 559, 592–605 (2001)

    ADS  Article  Google Scholar 

  124. 124.

    López-Corredoira, M.: Alcock-Paczyński cosmological test. Astrophys. J. 781, 96 (2014)

    ADS  Article  Google Scholar 

  125. 125.

    Melia, F., López-Corredoira, M.: Alcock-Paczyński cosmological test with model-independent BAO data. Int. J. Mod. Phys. D 26, 1750055 (2017)

    ADS  Article  Google Scholar 

  126. 126.

    Arp, H.C.: QSOs, Redshifts and Controversies. Interstellar Media, Berkeley (1987)

    Google Scholar 

  127. 127.

    Arp, H.C.: Catalogue of Discordant Redshift Associations. Apeiron, Montreal (2003)

    Google Scholar 

  128. 128.

    Burbidge, G.R.: Noncosmological Redshifts. Publ. Astron. Soc. Pac. 113, 899–902 (2001)

    ADS  Article  Google Scholar 

  129. 129.

    Bell, M.B.: Further evidence for large intrinsic redshifts. Astrophys. J. 566, 705–711 (2002)

    ADS  Article  Google Scholar 

  130. 130.

    Bell, M.B.: On quasar distances and lifetimes in a local model. Astrophys. J. 567, 801–810 (2002)

    ADS  Article  Google Scholar 

  131. 131.

    Bell, M.B.: Evidence that quasars and related active galaxies are good radio standard candles and that they are likely to be a lot closer than their redshifts imply. arXiv:astro-ph/0602242 (2006)

  132. 132.

    Bell, M.B.: Further evidence that the redshifts of AGN galaxies may contain intrinsic components. Astrophys. J. Lett. 667, L129–L132 (2007)

    ADS  Article  Google Scholar 

  133. 133.

    López-Corredoira, M., Gutiérrez, C. M.: Research on candidates for non-cosmological redshifts. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 75–92. AIP, Melville (2006)

  134. 134.

    López-Corredoira, M.: Apparent discordant redshift QSO-galaxy associations. In: Harutyunian, H.A., Mickaelian, A.M., Terzian, Y. (eds.) Evolution of Cosmic Objects Through Their Physical Activity, pp. 196–205. Gitutyun Publ. House of NAS RA, Yerevan (2010)

    Google Scholar 

  135. 135.

    Chu, Y., Zhu, X., Burbidge, G., Hewitt, A.: Statistical evidence for possible association between QSOs and bright galaxies. Astron. Astrophys. 138, 408–414 (1984)

    ADS  Google Scholar 

  136. 136.

    Zhu, X.F., Chu, Y.Q.: The association between quasars and the galaxies of the Virgo cluster. Astron. Astrophys. 297, 300–304 (1995)

    ADS  Google Scholar 

  137. 137.

    Burbidge, G.R., Narlikar, J.V., Hewitt, A.: The statistical significance of close pairs of QSOs. Nature 317, 413–415 (1985)

    ADS  Article  Google Scholar 

  138. 138.

    Burbidge, G.R.: The reality of anomalous redshifts in the spectra of some QSOs and its implications. Astron. Astrophys. 309, 9–22 (1996)

    ADS  Google Scholar 

  139. 139.

    Harutyunian, H.A., Nikogossian, E.H.: Quasars in regions of rich clusters of galaxies. Astrophysics 43(4), 391–402 (2000)

    ADS  Article  Google Scholar 

  140. 140.

    Benítez, N., Sanz, J.L., Martínez-González, E.: Quasar-galaxy associations revisited. Mon. Not. R. Astron. Soc. 320, 241–248 (2001)

    ADS  Article  Google Scholar 

  141. 141.

    Gaztañaga, E.: Correlation between galaxies and quasi-stellar objects in the sloan digital sky survey: a signal from gravitational lensing magnification? Astrophys. J. 589, 82–99 (2003)

    ADS  Article  Google Scholar 

  142. 142.

    Nollenberg, J.G., Williams, L.R.: Galaxy-quasar correlations between APM galaxies and hamburg-ESO QSOs. Astrophys. J. 634, 793–805 (2005)

    ADS  Article  Google Scholar 

  143. 143.

    Bukhmastova, Y.L.: Quasars lensed by globular clusters of spiral and elliptical galaxies. Astron. Lett. 33(6), 355–367 (2007) (Translated from original Russian: Pi’sma v Astronomicheckii Zhurnal 33(6), 403 (2007))

  144. 144.

    Burbidge, G., Napier, W.M.: Associations of high-redshift quasi-stellar objects with active, low-redshift spiral galaxies. Astrophys. J. 706, 657–664 (2009)

    ADS  Article  Google Scholar 

  145. 145.

    López-Corredoira, M.: Pending problems in QSOs. Int. J. Astron. Astrophys. 1(2), 73–82 (2011)

    Article  Google Scholar 

  146. 146.

    Taganov, I.N.: Quantum Cosmology: Deceleration of Time. TIN, St.-Petersburg (2008)

    Google Scholar 

  147. 147.

    Scranton, R., Ménard, B., Richards, G.T., et al.: Detection of cosmic magnification with the sloan digital sky survey. Astrophys. J. 633, 589–602 (2005)

    ADS  Article  Google Scholar 

  148. 148.

    Primack, J.R.: Precision cosmology. New Astron. Rev. 49, 25–34 (2005)

    ADS  Article  Google Scholar 

  149. 149.

    Gamow, G.: The expanding universe and the origin of galaxies. Kgl. Danske Videnskab Selskab Mat. Fys. Medd. 27(10), 3–15 (1953)

    Google Scholar 

  150. 150.

    Alpher, R.A., Herman, R.: Remarks on the evolution of the expanding universe. Phys. Rev. 75, 1089–1095 (1949)

    ADS  MATH  Article  Google Scholar 

  151. 151.

    Novikov, I.: Discovery of CMB, sakharov oscillations and polarization of the CMB anisotropy. In: Martínez, V.J., Trimble, V., Pons-Bordería, M.J. (eds.) Historical Development of Modern Cosmology (ASP Conf. Ser. 252), pp. 43–53. Astronomical Society of the Pacific, St. Francisco (2001)

  152. 152.

    Doroshkevich, A.G., Novikov, I.D.: Mean density of radiation in the metagalaxy and certain problems in relativistic cosmology. Sov. Phys.-Dokl. 9, 111–113 (1964) (Translated from original Russian: Dokl. Akad. Nauk. USSR, 154, 809–811 (1964))

  153. 153.

    Van Flandern, T.: Is the microwave radiation really from the big bang ’fireball’? Reflector (Astron. League Newsletter), XLV, 4 (1993)

  154. 154.

    Dicke, R.H., Peebles, P.J.E., Noll, P.G., Wilkinson, D.T.: Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965)

    ADS  Article  Google Scholar 

  155. 155.

    Mather, J.C., Cheng, E.S., Cottingham, D.A., et al.: Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994)

    ADS  Article  Google Scholar 

  156. 156.

    Shmaonov, T.: Pribori i Tekhnika Experimenta (Russia), vol. 1, p. 83 (1957)

  157. 157.

    Herzberg, G.: Spectra of Diatomic Molecules. Van Nostrand, New York (1950)

    Google Scholar 

  158. 158.

    Assis, A.K.T., Neves, M.C.D.: History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron 2, 79–84 (1995)

    Google Scholar 

  159. 159.

    Meyers, R.: A brief history of competing ideologies in cosmology and evidence for non-cosmological redshifts as a case for alternative theoretical interpretations in cosmology. PhD thesis, University of Western Sydney, Sydney (2003)

  160. 160.

    Eddington, A.S.: Internal Constitution of the Stars. Cambridge University Press, Cambridge (1926, reprinted: 1988)

  161. 161.

    Regener, E.: Der Energiestrom der Ultrastrahlung. Zeit. Phys. 80, 666–669 (1933)

    ADS  Article  Google Scholar 

  162. 162.

    Nernst, W.: Weitere prüfung der annahme lines stationären zustandes im weltall. Zeit. Phys. 106, 633–661 (1937)

    ADS  MATH  Article  Google Scholar 

  163. 163.

    Finley-Freundlich, E.: Red shifts in the spectra of celestial bodies. Phil. Mag. 45, 303–319 (1954)

    Article  Google Scholar 

  164. 164.

    Born, M.: On the interpretation of Freundlich’s red-shift formula. Proc. Phil. Soc. A67, 193–194 (1954)

    ADS  MATH  Article  Google Scholar 

  165. 165.

    Peebles, P.J.E.: The Standard Cosmological Model. In: Greco, M. (ed.) Le Rencontres de Physique de la Vallee d’Aoste: Results and Perspectives in Particle Physics, p. 39. Poligrafica Laziale s.r.l., Frascati (1998)

  166. 166.

    Bondi, H., Gold, T., Hoyle, F.: Black giant stars. Obs. Mag. 75, 80–81 (1955)

    ADS  Google Scholar 

  167. 167.

    Burbidge, G.R.: Nuclear energy generation and dissipation in galaxies. Publ. Astron. Soc. Pac. 70, 83–89 (1958)

    ADS  Article  Google Scholar 

  168. 168.

    Burbidge, G.R.: Explosive cosmogony and the quasi-steady state cosmology. In: Sato, K. (ed.) Cosmological Parameters and the Evolution of the Universe, pp. 286–289. Kluwer, Dordrecht (1999)

    Google Scholar 

  169. 169.

    Hoyle, F., Wickramashinghe, N.C., Reddish, V.C.: Solid hydrogen and the microwave background. Nature 218, 1124–1126 (1968)

    ADS  Article  Google Scholar 

  170. 170.

    Hoyle, F., Burbidge, G., Narlikar, J.V.: A quasi-steady state cosmological model with creation of matter. Astrophys. J. 410, 437–457 (1993)

    ADS  Article  Google Scholar 

  171. 171.

    Hoyle, F., Burbidge, G., Narlikar, J.V.: Astrophysical deductions from the quasi steadystate cosmology. Mon. Not. R. Astron. Soc. 267, 1007–1019 (1994) (Erratum: Mon. Not. R. Astron. Soc., 269, 1152 (1994))

  172. 172.

    Soberman, R.K., Dubin, M.: Dark matter is baryons. arXiv:astro-ph/0107550 (2001)

  173. 173.

    Alfonso-Faus, A., Fullana i Alfonso, M.J.F.: Sources of cosmic microwave radiation and dark matter identified: millimeter black holes (m.b.h.). arXiv:1004.2251 (2010)

  174. 174.

    Clube, S.V.M.: The material vacuum. Mon. Not. R. Astron. Soc. 193, 385–397 (1980)

    ADS  Article  Google Scholar 

  175. 175.

    Sorrell, W.H.: The cosmic microwave background radiation in a non-expanding universe. Astrophys. Space Sci. 317, 59 (2008)

    ADS  Article  Google Scholar 

  176. 176.

    Lorentz, H.A.: Electromagnetic phenomena in a system moving with any velocity less than that of light. Proc. R. Acad. Amst. 6, 809–830 (1904)

    Google Scholar 

  177. 177.

    Lerner, E.J.: Plasma model of microwave background and primordial elements—an alternative to the big bang. Laser Part. Beams 6, 457–469 (1988)

    ADS  Article  Google Scholar 

  178. 178.

    Lerner, E.J.: Intergalactic radio absorption and the COBE data. Astrophys. Space Sci. 227, 61–81 (1995)

    ADS  Article  Google Scholar 

  179. 179.

    Lerner, E.J.: Radio absorption by the intergalactic medium. Astrophys. J. 361, 63–68 (1990)

    ADS  Article  Google Scholar 

  180. 180.

    Lerner, E.J.: Confirmation of radio absorption by the intergalactic medium. Astrophys. Space Sci. 207, 17–26 (1993)

    ADS  Article  Google Scholar 

  181. 181.

    Garrett, M.A.: The FIR/radio correlation of high redshift galaxies in the region of the HDF-N. Astron. Astrophys. 384, L19–L22 (2002)

    ADS  Article  Google Scholar 

  182. 182.

    Mao, M.Y., Huynh, M.T., Norris, R.P., Dickinson, M., Frayer, M., Helou, G., Monkiewick, J.A.: No evidence for evolution in the far-infrared-radio correlation out to z   2 in the extended chandra deep field south. Astrophys. J. 731, 79 (2011)

  183. 183.

    Shpenkov, G.P., Kreidik, G.: Microwave background radiation of hydrogen atoms. Rev. Cienc. Exatas Nat. 4, 9–18 (2002)

    Google Scholar 

  184. 184.

    Krishan, V.: Optical depth of the cosmic microwave background due to scattering and absorption. arXiv:0909.0125 (2009)

  185. 185.

    Crawford, D.: Observational evidence favors a static universe (part II). J. Cosmol. 13, 3947–3999 (2011)

    Google Scholar 

  186. 186.

    Pecker, J.-C., Narlikar, J.V., Ochsenbein, F., Wickramasinghe, C.: The local contribution to the microwave background radiation. Res. Astron. Astrophys. 15, 461 (2015)

    ADS  Article  Google Scholar 

  187. 187.

    Planck Collaboration: Planck early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astron. Astrophys. 536, A10. (2011)

  188. 188.

    López-Corredoira, M., Sylos-Labini, F., Betancort-Rijo, J.: Absence of significant cross-correlation between WMAP and SDSS. Astron. Astrophys. 513, A3 (2010)

    Article  Google Scholar 

  189. 189.

    Navia, C.E., Augusto, C.R.A., Tsui, K.H.: On the ultra high energy cosmic rays and the origin of the cosmic microwave background radiation. arXiv:0707.1896 (2007)

  190. 190.

    Greisen, K.: End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966)

    ADS  Article  Google Scholar 

  191. 191.

    Zapsepin, G.T., Kuzmin, V.A.: Upper limit of the spectrum of cosmic rays. Sov. Phys. JETP Lett. 4, 78–80 (1966)

    ADS  Google Scholar 

  192. 192.

    Abraham, R.G., Nair, P., McCarthy, P.J., et al.: The gemini deep deep survey. VIII. When did early-type galaxies form? Astrophys. J. 669, 184–201 (2007)

    ADS  Article  Google Scholar 

  193. 193.

    Kashti, T., Waxman, E.: Searching for a correlation between cosmic-ray sources above \(10^{19}\) eV and large scale structure. J. Cosmol. Astropart. Phys. 5, 6 (2008)

    ADS  Article  Google Scholar 

  194. 194.

    Fahr, H.J., Zönnchen, J.H.: The “writing on the cosmic wall”: is there a straightforward explanation of the cosmic microwave background? Ann. Phys. 521, 699–721 (2009)

    MATH  Article  Google Scholar 

  195. 195.

    Li, T.-P., Liu, H., Song, L.-M., Xiong, S.-L., Nie, J.-Y.: Observation number correlation in WMAP data. Mon. Not. R. Astron. Soc. 398, 47–52 (2009)

    ADS  Article  Google Scholar 

  196. 196.

    Roukema, B.F.: On the suspected timing error in Wilkinson microwave anisotropy probe map-making. Astron. Astrophys. 518, A34 (2010)

    ADS  Article  Google Scholar 

  197. 197.

    Liu, H., Xiong, S.-L., Li, T.-P.: Diagnosing timing error in WMAP data. Mon. Not. R. Astron. Soc. 413, L96–L100 (2011)

    ADS  Article  Google Scholar 

  198. 198.

    Cover, K.S.: Sky maps without anisotropies in the cosmic microwave background are a better fit to WMAP’s uncalibrated time ordered data than the official sky maps. Europhys. Lett. 87, 69003 (2009)

    ADS  Article  Google Scholar 

  199. 199.

    Sachs, R.K., Wolfe, A.M.: Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73–90 (1967)

    ADS  Article  Google Scholar 

  200. 200.

    de Bernardis, P., Ade, P.A.R., Bock, J.J., et al.: A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)

    ADS  Article  Google Scholar 

  201. 201.

    Hanany, S., Ade, P., Balbi, A., et al.: MAXIMA-1: a measurement of the cosmic microwave background anisotropy on angular scales of 10’-5\(^\circ \). Astrophys. J. Lett. 545, L5–L9 (2000)

    ADS  Article  Google Scholar 

  202. 202.

    Hu, W., Dodelson, S.: Cosmic microwave background anisotropies. Ann. Rev. Astron. Astrophys. 40, 171–216 (2002)

    ADS  Article  Google Scholar 

  203. 203.

    Peebles, P.J.E., Yu, J.T.: Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815–836 (1970)

    ADS  Article  Google Scholar 

  204. 204.

    White, M., Viana, P.T.P., Liddle, A.R., Scott, D.: Primeval adiabatic perturbation in an expanding universe. Mon. Not. R. Astron. Soc. 283, 107–118 (2006)

    ADS  Article  Google Scholar 

  205. 205.

    Bond, J.R., Efstathiou, G.: The statistics of cosmic background radiation fluctuations. Mon. Not. R. Astron. Soc. 226, 655–687 (1987)

    ADS  Article  Google Scholar 

  206. 206.

    Jorgensen, H.E., Kotok, E., Naselsky, P., Novikov, I.: Evidence for Sakharov oscillations of initial perturbations in the anisotropy of the cosmic microwave background. Astron. Astrophys. 294, 639–647 (1995)

    ADS  Google Scholar 

  207. 207.

    Hu, W., Fukugita, M., Zaldarriaga, M., Tegmark, M.: Cosmic microwave background observables and their cosmological implications. Astrophys. J. 549, 669–680 (2001)

    ADS  Article  Google Scholar 

  208. 208.

    Larson, D., Dunkley, J., Hinshaw, G., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. Ser. 192, 16 (2011)

    ADS  Article  Google Scholar 

  209. 209.

    Blanchard, A., Douspis, M., Rowan-Robinson, M., Sarkar, S.: An alternative to the cosmological “concordance model”. Astron. Astrophys. 412, 35–44 (2003)

    ADS  MATH  Article  Google Scholar 

  210. 210.

    Peiris, H.: First year Wilkinson microwave anisotropy probe results: implications for cosmology and inflation. Contemp. Phys. 46(2), 77–91 (2005)

    ADS  Article  Google Scholar 

  211. 211.

    Disney, M.J.: Modern cosmology: science or folktale? Am. Sci. 95(5), 383–385 (2007)

    Google Scholar 

  212. 212.

    Jefferys, H., Berger, J.: Ockham’s Razor and Bayesian analysis. Am. Sci. 80(1), 64–72 (1992)

    ADS  Google Scholar 

  213. 213.

    Berger, J.O., Jefferys, W.H.: The application of Robust Bayesian analysis to hypothesis testing and Occam’s Razor. J. Ital. Stat. Soc. 1, 17–32 (1992)

    MATH  Article  Google Scholar 

  214. 214.

    Gil, F.J.: Modelos cosmológicos: ¿Ficciones útiles o descripciones realistas del universo? Thémata 40, 117–146 (2008)

    Google Scholar 

  215. 215.

    López-Corredoira, M., Gabrielli, A.: Peaks in the CMBR power spectrum. I. Mathematical analysis of the associated real space features. Phys. A 392, 474–484 (2013)

    Article  Google Scholar 

  216. 216.

    López-Corredoira, M.: Peaks in the CMBR power spectrum II: physical interpretation for any cosmological scenario. Int. J. Mod. Phys. D 22(7), 1350032 (2013)

    Article  Google Scholar 

  217. 217.

    Narlikar, J.V., Vishwakarma, R.G., Hajian, A., Souradeep, T., Burbidge, G., Hoyle, F.: Inhomogeneities in the microwave background radiation interpreted within the framework of the quasi-steady state cosmology. Astrophys. J. 585, 1–11 (2003)

    ADS  Article  Google Scholar 

  218. 218.

    Narlikar, J.V., Burbidge, G., Vishwakarma, R.G.: Cosmology and cosmogony in a cyclic universe. J. Astrophys. Astron. 28, 67–99 (2007)

    ADS  Article  Google Scholar 

  219. 219.

    Walker, M., Ohishi, M., Mori, M.: Microwave anisotropies from the Galactic halo. arXiv:astro-ph/0210483 (2002)

  220. 220.

    McGaugh, S.S.: Confrontation of modified newtonian dynamics predictions with Wilkinson microwave anisotropy probe first year data. Astrophys. J. 611(26–39), 26 (2004)

    ADS  Article  Google Scholar 

  221. 221.

    Angus, G.W., Diaferio, A.: The abundance of galaxy clusters in modified Newtonian dynamics: cosmological simulations with massive neutrinos. Mon. Not. R. Astron. Soc. 417, 941–949 (2011)

    ADS  Article  Google Scholar 

  222. 222.

    Dodelson, S.: Coherent phase argument for inflation. In: Nieves, J.F., Raymond, R. (eds.) Neutrinos, Flavor Physics and Precision Cosmology (AIP Conf. Proc. 689), pp. 184–196. AIP, Melville, New York (2003)

  223. 223.

    Coulson, D., Ferreira, P., Graham, P., Turok, N.: Microwave anisotropies from cosmic defects. Nature 368, 27–31 (1994)

    ADS  Article  Google Scholar 

  224. 224.

    López-Corredoira, M.: Some doubts on the validity of the foreground galactic contribution subtraction from microwave anisotropies. J. Astrophys. Astron. 28, 101–116 (2007)

    ADS  Article  Google Scholar 

  225. 225.

    Ferreira, P.G., Magueijo, J., Górski, K.M.: Evidence for non-Gaussianity in the COBE DMR 4 year sky maps. Astrophys. J. Lett. 503, L1–L4 (1998)

    ADS  Article  Google Scholar 

  226. 226.

    Pando, J., Valls-Gabaud, D., Fang, L.-Z.: Evidence for scale-scale correlations in the cosmic microwave background radiation. Phys. Rev. Lett. 81(21), 4568–4571 (1998)

    ADS  Article  Google Scholar 

  227. 227.

    Jeong, E., Smoot, G.F.: Probing non-Gaussianity in the cosmic microwave background anisotropies: one point distribution function. arXiv:0710.2371 (2007)

  228. 228.

    Raeth, C., Schuecker, P., Banday, A.J.: A scaling index analysis of the Wilkinson microwave anisotropy probe three-year data: signatures of non-Gaussianities and asymmetries in the cosmic microwave background. Mon. Not. R. Astron. Soc. 380, 466–478 (2007)

    ADS  Article  Google Scholar 

  229. 229.

    Bernui, A., Tsallis, C., Villela, T.: Deviation from Gaussianity in the cosmic microwave background temperature fluctuations. Europhys. Lett. 78(1), 19001 (2007)

    ADS  Article  Google Scholar 

  230. 230.

    McEwen, J.D., Hobson, M.P., Lasenby, A.N., Mortlock, D.J.: A high-significance detection of non-Gaussianity in the WMAP 5-yr data using directional spherical wavelets. Mon. Not. R. Astron. Soc. 388, 659–662 (2008)

    ADS  Article  Google Scholar 

  231. 231.

    Rossi, G., Sheth, R.K., Park, C., Hernández-Monteagudo, C.: Non-Gaussian distribution and clustering of hot and cold pixels in the five-year WMAP sky. Mon. Not. R. Astron. Soc. 399, 304–316 (2009)

    ADS  Article  Google Scholar 

  232. 232.

    Rubiño-Martín, J.A., Aliaga, A.M., Barreiro, R.B., et al.: Non-Gaussianity in the very small array cosmic microwave background maps with smooth goodness-of-fit tests. Mon. Not. R. Astron. Soc. 369, 909–920 (2006)

    ADS  Article  Google Scholar 

  233. 233.

    McEwen, J.D., Hobson, M.P., Lasenby, A.N., Mortlock, D.J.: A high-significance detection of non-Gaussianity in the WMAP 3-yr data using directional spherical wavelets. Mon. Not. R. Astron. Soc. 371, L50–L54 (2006)

    ADS  Article  Google Scholar 

  234. 234.

    Liu, X., Zhang, S.N.: Non-Gaussianity due to possible residual foreground signals in Wilkinson microwave anistropy probe first-year data using spherical wavelet approaches. Astrophys. J. 633, 542–551 (2005)

    ADS  Article  Google Scholar 

  235. 235.

    Tojeiro, R., Castro, P.G., Heavens, A.F., Gupta, S.: Non-Gaussianity in the Wilkinson microwave anisotropy probe data using the peak-peak correlation function. Mon. Not. R. Astron. Soc. 365, 265–275 (2006)

    ADS  Article  Google Scholar 

  236. 236.

    Chiang, L.-Y., Naselsky, P.D., Coles, P.: Departure from Gaussianity of the cosmic microwave background temperature anisotropies in the three-year WMAP data. Astrophys. J. 664, 8–13 (2007)

    ADS  Article  Google Scholar 

  237. 237.

    Gutierrez de La Cruz, C.M., Davies, R.D., Rebolo, R., Watson, R.A., Hancock, S., Lasenby, A.N.: Dual-frequency mapping with the Tenerife cosmic microwave background experiments. Mon. Not. R. Astron. Soc. 442, 10–22 (1995)

    ADS  Google Scholar 

  238. 238.

    Davies, R.D., Gutiérrez, C.M., Hopkins, J., et al.: Studies of cosmic microwave background structure at Dec.=+40 deg - I. The performance of the Tenerife experiments. Mon. Not. R. Astron. Soc. 278, 883–896 (1996)

    ADS  Article  Google Scholar 

  239. 239.

    Bennett, C.L., Hill, R.S., Hinshaw, G., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: foreground emission. Astrophys. J. Supp. Ser. 148, 97–117 (2003)

    ADS  Article  Google Scholar 

  240. 240.

    Leitch, E.M., Readhead, A.C.S., Pearson, T.J., Myers, S.T., Gulkis, S., Lawrence, C.R.: A measurement of anisotropy in the cosmic microwave background on 7’-22’ scales. Astrophys. J. 532, 37–56 (2000)

    ADS  Article  Google Scholar 

  241. 241.

    Kogut, A., Banday, A.J., Bennett, C.L., et al.: High-latitude galactic emission in the COBE differential microwave radiometer 2 year sky maps. Astrophys. J. 460, 1–9 (1996)

    ADS  Article  Google Scholar 

  242. 242.

    Finkbeiner, D.P., Langston, G.I., Minter, A.H.: Microwave interstellar medium emission in the green bank galactic plane survey: evidence for spinning dust. Astrophys. J. 617, 350–359 (2004)

    ADS  Article  Google Scholar 

  243. 243.

    Fernández-Cerezo, S., Gutiérrez, C.M., Rebolo, R., et al.: Observations of the cosmic microwave background and galactic foregrounds at 12–17GHz with the COSMOSOMAS experiment. Mon. Not. R. Astron. Soc. 370, 15 (2006)

    ADS  Article  Google Scholar 

  244. 244.

    Casassus, S., Readhead, A.C.S., Pearson, T.J., Nyman, L.-A., Shepherd, M.C., Bronfman, L.: Anomalous radio emission from dust in the helix. Astrophys. J. 603, 599–610 (2004)

    ADS  Article  Google Scholar 

  245. 245.

    Watson, R.A., Rebolo, R., Rubiño-Martín, J.A., Hildebrandt, S., Gutiérrez, C.M., Fernández-Cerezo, S., Hoyland, R.J., Battistelli, E.S.: Detection of anomalous microwave emission in the perseus molecular cloud with the COSMOSOMAS Experiment. Astrophys. J. Lett. 624, L89–L92 (2005)

    ADS  Article  Google Scholar 

  246. 246.

    de Oliveira-Costa, A., Tegmark, M., Gutiérrez, C.M., Jones, A.W., Davies, R.D., Lasenby, A.N., Rebolo, R., Watson, R.A.: Cross-correlation of tenerife data with galactic templates-evidence for spinning dust? Astrophys. J. Lett. 527, L9–L12 (1999)

    ADS  Article  Google Scholar 

  247. 247.

    de Oliveira-Costa, A., Tegmark, M., Finkbeiner, D.P., et al.: A new spin on galactic dust. Astrophys. J. 567, 363–369 (2002)

    ADS  Article  Google Scholar 

  248. 248.

    Draine, B.T., Lazarian, A.: Diffuse galactic emission from spinning dust grains. Astrophys. J. Lett. 494, L19–L22 (1998)

    ADS  Article  Google Scholar 

  249. 249.

    Draine, B.T., Lazarian, A.: Magnetic dipole microwave emission from dust grains. Astrophys. J. 512, 740–754 (1999)

    ADS  Article  Google Scholar 

  250. 250.

    Pietrobon, D., Górski, K.M., Bartlett, J., et al.: Analysis of WMAP 7 year temperature data: astrophysics of the galactic haze. Astrophys. J. 755, 69 (2012)

    ADS  Article  Google Scholar 

  251. 251.

    Finkbeiner, D.P., Davis, M., Schlegel, D.J.: Extrapolation of galactic dust emission at 100 microns to cosmic microwave background radiation frequencies using FIRAS. Astrophys. J. 524, 867–886 (1999)

    ADS  Article  Google Scholar 

  252. 252.

    López-Corredoira, M.: A conspicuous increase of galactic contamination over CMBR anisotropies at large angular scales. Astron. Astrophys. 346, 369–382 (1999)

    ADS  Google Scholar 

  253. 253.

    Bottino, M., Banday, A.J., Maino, D.: Foreground analysis of the Wilkinson microwave anisotropy probe 3-yr data with FASTICA. Mon. Not. R. Astron. Soc. 389, 1190–1208 (2008)

    ADS  Article  Google Scholar 

  254. 254.

    Schlegel, D.J., Finkbeiner, D.P., Davis, M.: Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998)

    ADS  Article  Google Scholar 

  255. 255.

    Masi, S., Ade, P.A.R., Bock, J.J., et al.: High-latitude galactic dust emission in the BOOMERANG maps. Astrophys. J. Lett. 553, L93–L96 (2001)

    ADS  Article  Google Scholar 

  256. 256.

    Ade, P.A., et al.: Planck collaboration: planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 594, A1 (2016)

    Article  Google Scholar 

  257. 257.

    Axelsson, M., Ihle, H.T., Scodeller, S., Hansen, F.K.: Testing for foreground residuals in the Planck foreground cleaned maps: a new method for designing confidence masks. Astron. Astrophys. 578, A44 (2015)

    ADS  Article  Google Scholar 

  258. 258.

    Kiss, C., Ábrahám, P., Klaas, U., Lemke, D., Héraudeau, P., del Burgo, C., Herbstmeier, U.: Small-scale structure of the galactic cirrus emission. Astron. Astrophys. 399, 177–185 (2003)

    ADS  Article  Google Scholar 

  259. 259.

    Ade, P.A.: Planck collaboration: planck early results. XXIII. The first all-sky survey of galactic cold clumps. Astron. Astrophys. 539, A23 (2011)

    Google Scholar 

  260. 260.

    Tegmark, M.: Removing real-world foregrounds from cosmic microwave background maps. Astrophys. J. 502, 1–6 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  261. 261.

    Robitaille, P.-M.: WMAP: a radiological analysis. Prog. Phys. 1(2007), 3–18 (2007)

    Google Scholar 

  262. 262.

    Eriksen, H.K., Banday, A.J., Górski, K.M., Lilje, P.B.: On foreground removal from the Wilkinson microwave anisotropy probe data by an internal linear combination method: limitations and implications. Astrophys. J. 612, 633–646 (2004)

    ADS  Article  Google Scholar 

  263. 263.

    Eriksen, H.K., Banday, A.J., Górski, K.M., Lilje, P.B.: Astro-ph communication: simulations of the WMAP internal linear combination sky map. arXiv:astro-ph/0508196 (2005)

  264. 264.

    Vio, R., Andreani, P.: A statistical analysis of the “internal linear combination” method in problems of signal separation as in cosmic microwave background observations. Astron. Astrophys. 487, 775–780 (2008)

    ADS  Article  Google Scholar 

  265. 265.

    Hansen, F.K., Banday, A.J., Eriksen, H.K., Górski, K.M., Lilje, P.B.: Foreground subtraction of cosmic microwave background maps using WI-FIT (wavelet-based high-resolution fitting of internal templates). Astrophys. J. 648, 784–796 (2006)

    ADS  Article  Google Scholar 

  266. 266.

    Naselsky, P.D., Novikov, I.G., Chiang, L.-Y.: Correlations from galactic foregrounds in the first-year Wilkinson microwave anisotropy probe data. Astrophys. J. 642, 617–624 (2006)

    ADS  Article  Google Scholar 

  267. 267.

    de Oliveira-Costa, A., Tegmark, M.: CMB multipole measurements in the presence of foregrounds. Phys. Rev. D 74(2), 023005 (2006)

    ADS  Article  Google Scholar 

  268. 268.

    Then, H.: Foreground contamination of the WMAP CMB maps from the perspective of the matched circle test. Mon. Not. R. Astron. Soc. 373, 139–145 (2006)

    ADS  Article  Google Scholar 

  269. 269.

    Samal, P.K., Saha, R., Jain, P., Ralston, J.P.: Testing isotropy of cosmic microwave background radiation. Mon. Not. R. Astron. Soc. 385, 1718–1728 (2008)

    ADS  Article  Google Scholar 

  270. 270.

    Liu, X., Zhang, S.N.: A cross-correlation analysis of WMAP and EGRET data in wavelet space. Astrophys. J. Lett. 636, L1–L4 (2006)

    ADS  Article  Google Scholar 

  271. 271.

    Verschuur, G.L.: High galactic latitude interstellar neutral hydrogen structure and associated (WMAP) high-frequency continuum emission. Astrophys. J. 671, 447–457 (2007)

    ADS  Article  Google Scholar 

  272. 272.

    Sarkar, S.: Does the galactic synchrotron radio background originate in old supernova remnants. Mon. Not. R. Astron. Soc. 199, 97–108 (1982)

    ADS  Article  Google Scholar 

  273. 273.

    Sarkar, S.: Galactic foregrounds for the CMB. Paper (PoS(FFP14)095) presented at the Frontiers of Fundamental Physics, Marseille, France, 15–18 July (2014)

  274. 274.

    Liu, H., Mertsch, P., Sarkar, S.: Fingerprints of galactic loop I on the cosmic microwave background. Astrophys. J. Lett. 789, L29 (2014)

    ADS  Article  Google Scholar 

  275. 275.

    Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D.: On the large-angle anomalies of the microwave sky. Mon. Not. R. Astron. Soc. 367, 79–102 (2006)

    ADS  Article  Google Scholar 

  276. 276.

    Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D.: Uncorrelated universe: statistical anisotropy and the vanishing angular correlation function in WMAP years 1-3. Phys. Rev. D 75(2), 23507 (2007)

    ADS  Article  Google Scholar 

  277. 277.

    Su, S.-C., Chu, M.-C.: New anomalies in cosmic microwave background anisotropy: violation of the isotropic Gaussian hypothesis in low-\(\ell \) modes. arXiv:0805.1316 (2008)

  278. 278.

    Starkman, G.D., Copi, C.J., Huterer, D., Schwarz, D.: The Oddly Quiet Universe: How the CMB challenges cosmology’s standard model. arXiv:1201.2459 (2012)

  279. 279.

    Rakić, A., Schwarz, D.J.: Correlating anomalies of the microwave sky. Phys. Rev. D 75(10), 103002 (2007)

    ADS  Article  Google Scholar 

  280. 280.

    Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D.: No large-angle correlations on the non-Galactic microwave sky. Mon. Not. R. Astron. Soc. 399, 295–303 (2009)

    ADS  Article  Google Scholar 

  281. 281.

    Liu, H., Li, T.-P.: Missing completely of CMB quadrupole in WMAP data. Chin. Sci. Bull. 58, 1243–1249 (2013)

    Article  Google Scholar 

  282. 282.

    Eriksen, H.K., Hansen, F.K., Banday, A.J., Górski, K.M., Lilje, P.B.: Asymmetries in the cosmic microwave background anisotropy field. Astrophys. J. 605, 14–20 (2004)

    ADS  Article  Google Scholar 

  283. 283.

    Jiang, B.-Z., Lieu, R., Zhang, S.-N., Wakker, B.: Significant foreground unrelated non-acoustic anisotropy on the 1 degree scale in wilkinson microwave anisotropy probe 5-year observations. Astrophys. J. 708, 375–380 (2010)

    ADS  Article  Google Scholar 

  284. 284.

    Bennett, C.L., Hill, R.S., Hinshaw, G., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: are there cosmic microwave background anomalies? Astrophys. J. Supp. Ser. 192, 17 (2011)

    ADS  Article  Google Scholar 

  285. 285.

    Ade, P.A., et al.: Planck collaboration: Planck 2015 results. XVI. Isotropy and statistics of the CMB. Astron. Astrophys. 594, A16 (2016)

    Article  Google Scholar 

  286. 286.

    Chyzy, K.T., Novosyadlyj, B., Ostrowski, M.: Gradient and dispersion analyses of the WMAP data. arXiv:astro-ph/0512020 (2005)

  287. 287.

    Abramo, L.R., Sodre Jr., L., Wuensche, C.A.: Anomalies in the low CMB multipoles and extended foregrounds. Phys. Rev. D 74(8), 83515 (2006)

    ADS  Article  Google Scholar 

  288. 288.

    Sharpe, H.N.: Heliosheath synchrotron radiation as a possible source for the arcade 2 CMB distortions. arXiv:0902.0181 (2009)

  289. 289.

    Sharpe, H.N.: A model for the WMAP anomalous ecliptic plane signal. arXiv:0904.1697 (2009)

  290. 290.

    Sharpe, H.N.: A Heliosheath Model for the Origin of the CMB Quadrupole Moment. arXiv:0905.2978 (2009)

  291. 291.

    Meliá, F.: Cosmological implications of the CMB large-scale structure. Astron. J. 149, 6 (2015)

    ADS  Article  Google Scholar 

  292. 292.

    Lieu, R., Mittaz, J.P.D.: On the absence of gravitational lensing of the cosmic microwave background. Astrophys. J. 628, 583–593 (2005)

    ADS  Article  Google Scholar 

  293. 293.

    Lieu, R., Mittaz, J.P.D., Zhang, S.-N.: The Sunyaev-Zel’dovich effect in a sample of 31 clusters: a comparison between the X-ray predicted and WMAP observed cosmic microwave background temperature decrement. Astrophys. J. 648, 176–199 (2006)

    ADS  Article  Google Scholar 

  294. 294.

    Bonamente, M., Joy, M.K., LaRoque, S.J., Carlstrom, J.E., Reese, E.D., Dawson, K.S.: Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25–54 (2006)

    ADS  Article  Google Scholar 

  295. 295.

    Lieu, R., Quenby, J., Bonamente, M.: The non-thermal intracluster medium. Astrophys. J. 721, 1482–1491 (2010)

    ADS  Article  Google Scholar 

  296. 296.

    Burbidge, G.R.: Was there really a big bang? Nature 233, 36 (1971)

    ADS  Article  Google Scholar 

  297. 297.

    Burbidge, G.R., Hoyle, F.: The origin of helium and the other light elements. Astrophys. J. Lett. 509, L1–L3 (1998)

    ADS  Article  Google Scholar 

  298. 298.

    Salvaterra, R., Ferrara, A.: Is primordial \(^4\)He truly from the big bang? Mon. Not. R. Astron. Soc. 340, L17–L20 (2003)

    ADS  Article  Google Scholar 

  299. 299.

    Schramm, D.N., Turner, M.S.: Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys. 70, 303–318 (1998)

    ADS  Article  Google Scholar 

  300. 300.

    Izotov, Y.I., Thuan, T.X.: The primordial abundance of \(^4\)He: evidence for non-standard big bang nucleosynthesis. Astrophys. J. Lett. 710, L67–L71 (2010)

    ADS  Article  Google Scholar 

  301. 301.

    Terlevich, E., Terlevich, R., Skillman, E., Stepanian, J., Lipovetskii, V.: The extremely low he abundance of SBS:0335–052. In: Edmunds, M.G., Terlevich, R. (eds.) Elements and the Cosmos, pp. 21–27. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  302. 302.

    Sargent, W.L.W., Searle, L.: The interpretation of the helium weakness in halo stars. Astrophys. J. Lett. 150, L33–L37 (1967)

    ADS  Article  Google Scholar 

  303. 303.

    Casagrande, L., Flynn, C., Portinari, L., Girardi, L., Jiménez, R.: The helium abundance and \(\Delta Y/\Delta Z\) in lower main-sequence stars. Mon. Not. R. Astron. Soc. 382, 1516–1540 (2007)

    ADS  Article  Google Scholar 

  304. 304.

    Ryan, S.G., Beers, T.C., Olive, K.A., Fields, B.D., Norris, J.E.: Primordial lithium and big bang nucleosynthesis. Astrophys. J. Lett. 530, L57–L60 (2000)

    ADS  Article  Google Scholar 

  305. 305.

    Coc, A., Goriley, S., Xu, Y., Saimpert, M., Vangioni, E.: Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network. Astrophys. J. 744, 158 (2012)

    ADS  Article  Google Scholar 

  306. 306.

    Famaey, B., McGaugh, S.: Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Liv. Rev. Relat. 15, 10 (2012)

    Article  Google Scholar 

  307. 307.

    Cyburt, R.H., Fields, B.D., Olive, K.A.: An update on the big bang nucleosynthesis prediction for \(^7\)Li: the problem worsens. J. Cosmol. Astropart. Phys. 11, 12 (2008)

    ADS  Article  Google Scholar 

  308. 308.

    Korn, A.J., Grundahl, F., Richard, O., Barklem, P.S., Mashonkina, L., Collet, R., Piskunov, N., Gustafsson, B.: A probable stellar solution to the cosmological lithium discrepancy. Nature 442, 657–659 (2006)

    ADS  Article  Google Scholar 

  309. 309.

    Howk, J.C., Lehner, N., Fields, B.D., Mathews, G.J.: Observation of interstellar lithium in the low-metallicity small magellanic cloud. Nature 489, 121–123 (2012)

    ADS  Article  Google Scholar 

  310. 310.

    Vidal-Madjar, A., Ferlet, R., Lemoine, M.: Deuterium abundance and cosmology. In: Brandt, J.C., Ake, T.B. III, Petersen, C.C. (eds.) The Scientific Impact of the Goddard High Resolution Spectrograph (ASP Conf. Series, 143), pp. 3–17. Astron. Soc of the Pacific, St. Francisco (1998)

  311. 311.

    Prodanovic, T., Fields, B.D.: On nonprimordial deuterium production by accelerated particles. Astrophys. J. 597, 48–56 (2003)

    ADS  Article  Google Scholar 

  312. 312.

    Casuso, E., Beckman, J.E.: Beryllium and boron evolution in the galaxy. Astrophys. J. 475, 155–162 (1997)

    ADS  Article  Google Scholar 

  313. 313.

    Boyd, R., Kajino, T.: Can Be-9 provide a test of cosmological theories? Astrophys. J. Lett. 336, L55–L58 (1989)

    ADS  Article  Google Scholar 

  314. 314.

    Hata, N., Scherrer, R.J., Steigman, G., Thomas, D., Walker, T.P., Bludman, S., Langacker, P.: Big bang nucleosynthesis in crisis? Phys. Rev. Lett. 75, 3977–3980 (1995)

    ADS  Article  Google Scholar 

  315. 315.

    Kurucz, R.L.: Gedanken astrophysics: the universe since recombination. Comm. Astrophys. 16, 1–15 (1992)

    ADS  Google Scholar 

  316. 316.

    Takei, Y., Henry, J.P., Finoguenov, A., Mitsuda, K., Tamura, T., Fujimoto, R., Briel, U.G.: Warm-hot intergalactic medium associated with the coma cluster. Astrophys. J. 655, 831–842 (2007)

    ADS  Article  Google Scholar 

  317. 317.

    Anderson, M.E., Bregman, J.N.: Do hot halos around galaxies contain the missing baryons? Astrophys. J. 714, 320–331 (2010)

    ADS  Article  Google Scholar 

  318. 318.

    McGaugh, S.S., Schombert, J.M., de Blok, W.J.G., Zagursky, M.J.: The baryon content of cosmic structures. Astrophys. J. Lett. 708, L14–L17 (2010)

    ADS  Article  Google Scholar 

  319. 319.

    Eckert, D., Jauzac, M., Shan, H., et al.: Warm hot baryons comprise 510 per cent of filaments in the cosmic web. Nature 528, 105–107 (2015)

    ADS  Article  Google Scholar 

  320. 320.

    Becker, R.H., Fan, X., White, R.L., et al.: Evidence for reionization at \(z\sim 6\): detection of a Gunn-Peterson trough in a \(z=6.28\) quasar. Astron. J. 122, 2850–2857 (2001)

    ADS  Article  Google Scholar 

  321. 321.

    Fan, X., Narayanan, V.K., Lupton, R.H., et al.: A survey of \(z>5.8\) quasars in the sloan digital sky survey. I. Discovery of three new quasars and the spatial density of luminous quasars at \(z\sim 6\). Astron. J. 122, 2833–2849 (2001)

    ADS  Article  Google Scholar 

  322. 322.

    Malhotra, S., Rhoads, J.: Luminosity functions of Ly\(\alpha \) Emitters at redshifts \(z=6.5\) and \(z=5.7\): evidence against reionization at \(z<=6.5\). Astrophys. J. Lett. 617, L5–L8 (2004)

    ADS  Article  Google Scholar 

  323. 323.

    Jarosik, N., Bennett, C.L., Dunkley, J., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results. Astrophys. J. Supp. Ser. 192, 14 (2011)

    ADS  Article  Google Scholar 

  324. 324.

    Ade, P.A., et al.: Planck collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)

    Article  Google Scholar 

  325. 325.

    Bunker, A.J., Wilkins, S., Ellis, R.S., et al.: The contribution of high-redshift galaxies to cosmic reionization: new results from deep WFC3 imaging of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. 409, 855–866 (2010)

    ADS  Article  Google Scholar 

  326. 326.

    Bouwens, R.J., Illingworth, G.D., Labbe, I., et al.: A candidate redshift \(z\sim 10\) galaxy and rapid changes in that population at an age of 500 Myr. Nature 469, 504–507 (2011)

    ADS  Article  Google Scholar 

  327. 327.

    Dopita, M.A., Krauss, L.M., Sutherland, R.S., Kobayashi, C., Lineweaver, C.H.: Re-ionizing the universe without stars. Astrophys. Space Sci. 335, 345–352 (2011)

    ADS  Article  Google Scholar 

  328. 328.

    Battaner, E., Florido, E., Jiménez-Vicente, J.: Magnetic fields and large scale structure in a hot universe. I. General equations. Astron. Astrophys. 326, 13–22 (1997)

    ADS  Google Scholar 

  329. 329.

    Florido, E., Battaner, E.: Magnetic fields and large-scale structure in a hot universe. II. Magnetic flux tubes and filamentary structure. Astron. Astrophy. 327, 1–7 (1997)

    ADS  Google Scholar 

  330. 330.

    Battaner, E., Florido, E., García-Ruiz, J.M.: Magnetic fields and large scale structure in a hot Universe. III. The polyhedric network. Astron. Astrophys. 327, 8–10 (1997)

    ADS  Google Scholar 

  331. 331.

    Battaner, E., Florido, E.: Magnetic fields and large scale structure in a hot Universe. IV. The egg-carton Universe. Astron. Astrophys. 338, 383–385 (1998)

    ADS  Google Scholar 

  332. 332.

    Nayeri, A., Engineer, S., Narlikar, J.V., Hoyle, F.: Structure formation in the quasi-steady state cosmology: a toy model. Astrophys. J. 525, 10–16 (1999)

    ADS  Article  Google Scholar 

  333. 333.

    Broadhurst, T.J., Ellis, R.S., Koo, D.C., Szalay, A.S.: Large-scale distribution of galaxies at the Galactic poles. Nature 343, 726–728 (1990)

    ADS  Article  Google Scholar 

  334. 334.

    Kurki-Suonio, H.: Galactic beads on a cosmic string. Sci. News 137, 287 (1990)

    Google Scholar 

  335. 335.

    Kaiser, N., Peacock, J.A.: Power-spectrum analysis of one-dimensional redshift surveys. Astrophys. J. 379, 482–506 (1991)

    ADS  Article  Google Scholar 

  336. 336.

    Einasto, J., Einasto, M., Gottlöber, S., et al.: A 120-Mpc periodicity in the three-dimensional distribution of galaxy superclusters. Nature 385, 139–141 (1997)

    ADS  Article  Google Scholar 

  337. 337.

    Nabokov, N.V., Baryshev, Yu.V.: Method for analyzing the spatial distribution of galaxies on gigaparsec scales. II. Application to a grid of the HUDF-FDF-COSMOS-HDF surveys. Astrophysics 53(1), 101–111 (2010) (Trans. from Russian: Astrofizika, 53(1), 117–129 (2010))

  338. 338.

    Massey, R., Rhodes, J., Ellis, R., et al.: Dark matter maps reveal cosmic scaffolding. Nature 445, 286–290 (2007)

    ADS  Article  Google Scholar 

  339. 339.

    Haggerty, M.J., Wertz, J.R.: On the redshift-magnituderelation in hierarchical cosmologies. Mon. Not. R. Astron. Soc. 155, 495–503 (1972)

    ADS  Article  Google Scholar 

  340. 340.

    Fang, L.L., Mo, H.J., Ruffini, R.: The cellular structure of the universe and cosmological tests. Astron. Astrophys. 243, 283–294 (1991)

    ADS  Google Scholar 

  341. 341.

    Ribeiro, M.B.: On modeling a relativistic hierarchical (fractal) cosmology by Tolman’s spacetime. II—analysis of the Einstein-de Sitter model. Astrophys. J. 395, 29–33 (1992)

    ADS  Article  Google Scholar 

  342. 342.

    Ribeiro, M.B.: On modeling a relativistic hierarchical (fractal) cosmology by Tolman’s spacetime. I—theory. Astrophys. J. 388, 1–8 (1992)

    ADS  Article  Google Scholar 

  343. 343.

    Ribeiro, M.B.: On modeling a relativistic hierarchical (fractal) cosmology by Tolman’s spacetime. III. Numerical results. Astrophys. J 415, 469–485 (1993)

    ADS  Article  Google Scholar 

  344. 344.

    Best, J.S.: An examination of the large-scale clustering of the Las Campanas redshift survey. Astrophys. J. 541, 519–526 (2000)

    ADS  Article  Google Scholar 

  345. 345.

    de Lapparent, V., Geller, M.J., Huchra, J.P.: A slice of the universe. Astrophys. J. Lett. 302, L1–L5 (1986)

    ADS  Article  Google Scholar 

  346. 346.

    Dressler, A., Faber, S.M., Burstein, D., Davies, R.L., Lynden-Bell, D., Terlevich, R.J., Wegner, G.: Spectroscopy and photometry of elliptical galaxies—a large-scale streaming motion in the local universe. Astrophys. J. Lett. 313, L37–L42 (1987)

    ADS  Article  Google Scholar 

  347. 347.

    Sandage, A.: The redshift-distance relation. IX—perturbation of the very nearby velocity field by the mass of the Local Group. Astrophys. J. 307, 1–19 (1986)

    ADS  Article  Google Scholar 

  348. 348.

    Ekholm, T., Baryshev, Yu., Teerikorpi, P., Hanski, M.O., Paturel, G.: On the quiescence of the Hubble flow in the vicinity of the Local Group. A study using galaxies with distances from the Cepheid PL-relation. Astron. Astrophys. 368, L17–L20 (2001)

    ADS  Article  Google Scholar 

  349. 349.

    Karachentsev, I.D., Sharina, M.E., Makarov, D.I., et al.: The very local Hubble flow. Astron. Astrophys. 389, 812–824 (2002)

    ADS  Article  Google Scholar 

  350. 350.

    Matravers, D.R., Ellis, G.F.R., Stoeger, W.R.: Complementary approaches to cosmology—relating theory and observations. Q. J. R. Astron. Soc. 36, 29–45 (1995)

    ADS  Google Scholar 

  351. 351.

    Lauer, T.R., Postman, M.: The motion of the Local Group with respect to the 15,000 kilometer per second Abell cluster inertial frame. Astrophys. J. 425, 418–438 (1994)

    ADS  Article  Google Scholar 

  352. 352.

    Mathewson, D.S., Ford, V.L., Buchhorn, M.: No back-side infall into the great attractor. Astrophys. J. Lett. 389, L5–L8 (1992)

    ADS  Article  Google Scholar 

  353. 353.

    Lindley, D.: Not so Great Attractor? Nature 356, 657 (1992)

    ADS  Article  Google Scholar 

  354. 354.

    Finkbeiner, A.: Mapping the river in the sky. Science 257, 1208–1210 (1992)

    ADS  Google Scholar 

  355. 355.

    Hudson, M.J., Smith, R.J., Lucey, J.R., Schelegel, D.J., Davies, R.L.: A large-scale bulk flow of galaxy clusters. Astrophys. J. Lett. 512, L79–L82 (1999)

    ADS  Article  Google Scholar 

  356. 356.

    Lee, J., Komatsu, E.: Bullet cluster: a challenge to \(\Lambda \)CDM cosmology. Astrophys. J. 718, 60–65 (2010)

    ADS  Article  Google Scholar 

  357. 357.

    Thompson, R., Nagamine, K.: Pairwise velocities of dark matter haloes: a test for the cold dark matter model using the bullet cluster. Mon. Not. R. Astron. Soc. 419, 3560–3570 (2012)

    ADS  Article  Google Scholar 

  358. 358.

    Ayaita, Y., Weber, M., Wetterich, C.: Peculiar velocity anomaly from forces beyond gravity? arXiv:0908.2903 (2009)

  359. 359.

    Kashlinsky, A., Atrio-Barandela, F., Kocevski, D., Ebeling, H.: A measurement of large-scale peculiar velocities of clusters of galaxies: results and cosmological implications. Astrophys. J. Lett. 686, L49–L52 (2009)

    ADS  Article  Google Scholar 

  360. 360.

    Atrio-Barandela, F., Kashlinsky, A., Ebeling, H., Fixsen, D.J., Kocevski, D.: Probing the dark flow signal in WMAP 9-year and Planck cosmic microwave background maps. Astrophys. J. 810, 143 (2015)

    ADS  Article  Google Scholar 

  361. 361.

    Tikhonov, A.V., Gottlöber, S., Yepes, G., Hoffman, Y.: The sizes of minivoids in the local Universe: an argument in favour of a warm dark matter model? Mon. Not. R. Astron. Soc. 399, 1611–1621 (2009)

    ADS  Article  Google Scholar 

  362. 362.

    Peebles, P.J.E., Nusser, A.: Nearby galaxies as pointers to a better theory of cosmic evolution. Nature 465, 565–569 (2010)

    ADS  Article  Google Scholar 

  363. 363.

    Perivolaropoulos, L.: Six puzzles for LCDM cosmology. arXiv:0811.4684 (2008)

  364. 364.

    Anderson, L., Aubourg, E., Bailey, S., et al.: The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data releases 10 and 11 galaxy samples. Mon. Not. R. Astron. Soc. 441, 24–62 (2014)

    ADS  Article  Google Scholar 

  365. 365.

    Roukema, B.F., Buchert, T., Ostrowski, J.J., France, M.J.: Evidence for an environment-dependent shift in the baryon acoustic oscillation peak. Mon. Not. R. Astron. Soc. 448, 1660–1673 (2015)

    ADS  Article  Google Scholar 

  366. 366.

    Tifft, W.G.: Discrete states of redshift and galaxy dynamics. I—internal motions in single galaxies. Astrophys. J. 206, 38–56 (1976)

    ADS  Article  Google Scholar 

  367. 367.

    Tifft, W.G.: Discrete states of redshift and galaxy dynamics. II—systems of galaxies. Astrophys. J. 211, 31–46 (1977)

    ADS  Article  Google Scholar 

  368. 368.

    Tifft, W.G.: Periodicity in the redshift intervals for double galaxies. Astrophys. J. 236, 70–74 (1980)

    ADS  Article  Google Scholar 

  369. 369.

    Guthrie, B., Napier, W.M.: Redshift periodicity in the local supercluster. Astron. Astrophys. 310, 353–370 (1996)

    ADS  Google Scholar 

  370. 370.

    Napier, W.M.: Statistics of redshift periodicities. In: Pecker, J.-C., Narlikar, J. (eds.) Current Issues in Cosmology, pp. 207–216. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  371. 371.

    Burbidge, G.R., O’Dell, S.L.: The distribution of redshifts of quasi-stellar objects and related emission-line objects. Astrophys. J. 178, 583–606 (1972)

    ADS  Article  Google Scholar 

  372. 372.

    Bell, M.B.: Discrete intrinsic redshifts from quasars to normal galaxies. arXiv:astro-ph/0211091 (2002)

  373. 373.

    Bell, M.B., Comeau, S.P.: Further evidence for quantized intrinsic redshifts in galaxies: is the great attractor a myth? arXiv:astro-ph/0305112 (2003)

  374. 374.

    Bell, M.B., Comeau, S.P.: Intrinsic redshifts in QSOs near NGC 6212. arXiv:astro-ph/0306042 (2003)

  375. 375.

    Bell, M.B., McDiarmid, D.: Six peaks visible in the redshift distribution of 46,400 SDSS quasars agree with the preferred redshifts predicted by the decreasing intrinsic redshift model. Astrophys. J. 648, 140–147 (2006)

    ADS  Article  Google Scholar 

  376. 376.

    Hartnett, J.G., Hirano, K.: Galaxy redshift abundance periodicity from Fourier analysis of number counts N( z) using SDSS and 2dF GRS galaxy surveys. Astrophys. Space Sci. 328, 13–24 (2008)

    ADS  Article  Google Scholar 

  377. 377.

    Hartnett, J.G.: Unknown selection effect simulates redshift periodicity in quasar number counts from Sloan digital sky survey astrophys. Space Sci. 324, 13–16 (2009)

    ADS  Article  Google Scholar 

  378. 378.

    Fulton, C.C., Arp, H.C.: The 2dF redshift survey. I. Physical association and periodicity in quasar families. Astrophys. J. 754, 134 (2012)

    ADS  Article  Google Scholar 

  379. 379.

    Hawkins, E., Maddox, S., Merrifield, M.: No periodicities in 2dF redshift survey data mon. Not. R. Astron. Soc. 336, L13–L16 (2002)

    ADS  Article  Google Scholar 

  380. 380.

    Tang, S.M., Zhang, S.N.: Critical examinations of QSO redshift periodicities and associations with galaxies in sloan digital sky survey data. Astrophys. J. 633, 41–51 (2005)

    ADS  Article  Google Scholar 

  381. 381.

    Tang, S., Zhang, S.N.: Evidence against non-cosmological redshifts of QSOs in SDSS data. In: Basu, D. (ed.) Redshifts in Spectral Lines of Quasi Stellar Objects, pp. 125–136. Research Signpost, Kerala (2010)

    Google Scholar 

  382. 382.

    Bajan, K., Flin, P., Godlowski, W., Pervushin, V.P.: On the investigations of galaxy redshift periodicity. Physics of Particles and Nuclei Letters 4(1), 5–10 (2007)

    ADS  Article  Google Scholar 

  383. 383.

    Repin, S.V., Komberg, B.V., Lukash, V.N.: Absence of a periodic component in the quasar Z distribution. Astron. Rep. 56(9), 702–709 (2012)

    ADS  Article  Google Scholar 

  384. 384.

    Hirano, K., Komiya, Z.: Observational tests for oscillating expansion rate of the Universe. Phys. Rev. D 82(10), 103513 (2010)

    ADS  Article  Google Scholar 

  385. 385.

    Lehto, A.: Periodic time and the stationary properties of matter. Chin. J. Phys. 28, 215–225 (1990)

    Google Scholar 

  386. 386.

    Lehto, A.: On the Planck scale and properties of matter. Nonlinear Dyn. 55, 279–298 (2009)

    MATH  Article  Google Scholar 

  387. 387.

    Taubes, G.: Theorists Nix distant antimatter galaxies. Science 278, 226 (1997)

    Article  Google Scholar 

  388. 388.

    Steinhardt, P.J.: La inflación a debate. Investigación y Ciencia. Junio 2011, 16–23 (2011)

  389. 389.

    Martin, J., Ringeval, C., Vennin, V.: Encyclopaedia inflationaris. Phys. Dark Univ. 5, 75–235 (2014)

    Article  Google Scholar 

  390. 390.

    Zwicky, F.: Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6(10), 110–127 (1933)

    ADS  MATH  Google Scholar 

  391. 391.

    Kahn, F.D., Woltjer, L.: Intergalactic matter and the galaxy. Astrophys. J. 130, 705–717 (1959)

    ADS  Article  Google Scholar 

  392. 392.

    Page, T.: Radial velocities and masses of double galaxies. Astrophys. J. 116, 63–84 (1952)

    ADS  Article  Google Scholar 

  393. 393.

    Page, T.: Average masses and mass-luminosity ratios of the double galaxies. Astrophys. J. 132, 910–912 (1960)

    ADS  Article  Google Scholar 

  394. 394.

    Holmberg, E.: On the masses of double galaxies. Medd. Lunds Astron. Observ. Ser. I(186), 1–20 (1954)

    ADS  MATH  Google Scholar 

  395. 395.

    Babcock, H.W.: The rotation of the Andromeda Nebula. Lick Obs. Bull. 19(498), 41–51 (1939)

    ADS  Article  Google Scholar 

  396. 396.

    Ostriker, J.P., Peebles, J.P.E.: A numerical study of the stability of flattened galaxies: or, can cold galaxies survive? Astrophys. J. 186, 467–480 (1973)

    ADS  Article  Google Scholar 

  397. 397.

    Ostriker, J.P., Peebles, J.P.E., Yahil, A.: The size and mass of galaxies, and the mass of the universe. Astrophys. J. Lett. 193, L1–L4 (1974)

    ADS  Article  Google Scholar 

  398. 398.

    Rubin, V.: Rotational properties of 21 Sc galaxies with a large range of luminosities and radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophys. J. 238, 471–487 (1980)

    ADS  Article  Google Scholar 

  399. 399.

    Bell, F.B., McIntosh, D.H., Katz, N., Weinberg, M.D.: A first estimate of the Baryonic mass function of galaxies. Astrophys. J. Lett. 585, L117–L120 (2003)

    ADS  Article  Google Scholar 

  400. 400.

    Turner, M.S.: The case for \(\Omega _M= 0.33\pm 0.035\). Astrophys. J. 576, L101–L104 (2002)

    ADS  Article  Google Scholar 

  401. 401.

    White, S.D.M., Rees, M.J.: Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    ADS  Article  Google Scholar 

  402. 402.

    Battaner, E., Florido, E.: The rotation curve of spiral galaxies and its cosmological implications. Fund. Cosmic Phys. 21, 1–154 (2000)

    ADS  Google Scholar 

  403. 403.

    López-Corredoira, M., Beckman, J.E., Casuso, E.: High-velocity clouds as dark matter in the local group. Astron. Astrophys. 351, 920–924 (1999)

    ADS  Google Scholar 

  404. 404.

    López-Corredoira, M., Betancort-Rijo, J., Beckman, J.E.: Generation of galactic disc warps due to intergalactic accretion flows onto the disc. Astron. Astrophys. 386, 169–186 (2002)

    ADS  Article  Google Scholar 

  405. 405.

    McGaugh, S.S.: Boomerang data suggest a purely Baryonic universe. Astrophys. J. Lett. 541, L33–L36 (2000)

    ADS  Article  Google Scholar 

  406. 406.

    Evans, N.W.: No need for dark matter in galaxies? In: Spooner, N.J.C., Kudryavtsev, V. (eds.) Proceedings of the 3rd International Workshop on the Identification of Dark Matter, pp. 85–92. World Scientific, Singapore (2001)

    Google Scholar 

  407. 407.

    Tasitsiomi, A.: The state of the cold dark matter models on galactic and subgalactic scales. Int. J. Mod. Phys. D 12(7), 1157–1196 (2003)

    ADS  Article  Google Scholar 

  408. 408.

    Sellwood, J.A.: Bar-Halo friction in galaxies. III. Halo density changes. Astrophys. J. 679, 379–396 (2008)

    ADS  Article  Google Scholar 

  409. 409.

    Gnedin, O.Y., Kravtsov, A.V., Klypin, A.A., Nagai, D.: Response of dark matter halos to condensation of Baryons: cosmological simulations and improved adiabatic contraction model. Astrophys. J. 616, 16–26 (2004)

    ADS  Article  Google Scholar 

  410. 410.

    Di Cintio, A., Brook, C.B., Macciò, A.V., Stinson, G.S., Knebe, A., Dutton, A.A., Wadsley, J.: The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014)

    ADS  Article  Google Scholar 

  411. 411.

    Binney, J., Gerhard, O., Silk, J.: The dark matter problem in disc galaxies. Mon. Not. R. Astron. Soc. 321, 471–474 (2001)

    ADS  Article  Google Scholar 

  412. 412.

    Casuso, E., Beckman, J.E.: On the origin of the angular momentum of galaxies: cosmological tidal torques and coriolis force. Mon. Not. R. Astron. Soc. 449, 2910–2918 (2015)

    ADS  Article  Google Scholar 

  413. 413.

    McGaugh, S.: The third law of galactic rotation. Galaxies 2, 601–622 (2014)

    ADS  Article  Google Scholar 

  414. 414.

    D’Onguia, E., Lake, G.: Cold dark matter’s small-scale crisis grows up. Astrophys. J. 612, 628–632 (2004)

    ADS  Article  Google Scholar 

  415. 415.

    Kroupa, P., Famaey, B., de Boer, K.S., et al.: Local-Group tests of dark-matter concordance cosmology. Towards a new paradigm for structure formation. Astron. Astrophys. 523, A32 (2010)

    Article  Google Scholar 

  416. 416.

    Kroupa, P., Theis, C., Boily, C.M.: The great disk of Milky-Way satellites and cosmological sub-structures. Astron. Astrophys. 431, 517–521 (2005)

    ADS  Article  Google Scholar 

  417. 417.

    Pawlowski, M.S., Kroupa, P.: The rotationally stabilized VPOS and predicted proper motions of the Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 435, 2116–2131 (2013)

    ADS  Article  Google Scholar 

  418. 418.

    Kroupa, P.: The dark matter crisis: falsification of the current standard model of cosmology. Publ. Astron. Soc. Aust. 29, 395–433 (2012)

    ADS  Article  Google Scholar 

  419. 419.

    López-Corredoira, M., Kroupa, P.: The number of tidal dwarf satellite galaxies in dependence of Bulge Index. Astrophys. J. 817, 75 (2016)

    ADS  Article  Google Scholar 

  420. 420.

    Lasserre, T., Afonso, C., Albert, J.N., et al.: Not enough stellar mass Machos in the Galactic halo. Astron. Astrophys. 355, L39–L42 (2000)

    ADS  Google Scholar 

  421. 421.

    Moore, B.: Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629–631 (1994)

    ADS  Article  Google Scholar 

  422. 422.

    Moore, B.: An upper limit to the mass of black holes in the halo of the galaxy. Astrophys. J. Lett. 413, L93–L96 (1993)

    ADS  Article  Google Scholar 

  423. 423.

    Sadoulet, B.: Deciphering the nature of dark matter. Rev. Mod. Phys. 71, S197–S204 (1999)

    ADS  Article  Google Scholar 

  424. 424.

    Aharonian, F., Akhperjanian, A.G., Bazer-Bachi, A.R., et al.: The H.E.S.S. survey of the inner galaxy in very high energy gamma rays. Astrophys. J. 636, 777–797 (2006)

    ADS  Article  Google Scholar 

  425. 425.

    Sánchez-Conde, M.A.: Gamma-ray dark matter searches in the Milky Way. Paper presented at the Conference Distribution of Mass in the Milky Way, Leiden, Netherlands, 13–17, July (2009)

  426. 426.

    Toomre, A.: What amplifies the spirals. In: Fall, S.M., Lynden-Bell, D. (eds.) The Structure and Evolution of Normal Galaxies, pp. 111–136. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  427. 427.

    Sanders, R.H., McGaugh, S.S.: Modified Newtonian dynamics as an alternative to dark matter. Ann. Rev. Astron. Astrophys. 40, 263–317 (2002)

    ADS  Article  Google Scholar 

  428. 428.

    Drexler, J.: Identifying dark matter through the constraints imposed by fourteen astronomically based ‘cosmic constituents’. arXiv:astro-ph/0504512 (2005)

  429. 429.

    Mayer, F.J., Reitz, J.R.: Electromagnetic composites at the compton scale. Int. J. Theor. Phys. 51, 322–330 (2012)

    MATH  Article  Google Scholar 

  430. 430.

    Hajdukovic, D.S.: Virtual gravitational dipoles: the key for the understanding of the Universe? Phys. Dark Univ. 3, 34–40 (2014)

    Article  Google Scholar 

  431. 431.

    Padmanabhan, T.: Cosmological constant-the weight of the vacuum. Phys. Rep. 380, 235–320 (2003)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  432. 432.

    Fukugita, M., Lahav, O.: Ly-alpha clouds at low redshift and the cosmological constant. Mon. Not. R. Astron. Soc. 253, 17P–20P (1991)

    ADS  Article  Google Scholar 

  433. 433.

    Longair, M.S.: Observational cosmology 1986. In: Hewitt, A., Burbidge, G., Fang, L.Z. (eds.) Observational Cosmology (IAU Symp. 124), pp. 823–840. Reidel, Dordrecht (1987)

    Google Scholar 

  434. 434.

    Efstathiou, G., Sutherland, W.J., Maddox, S.J.: The cosmological constant and cold dark matter. Nature 348, 705–707 (1990)

    ADS  Article  Google Scholar 

  435. 435.

    Aguirre, A., Haiman, Z.: Cosmological constant or intergalactic dust? Constraints from the cosmic far-infrared background. Astrophys. J. 532, 28–36 (2000)

    ADS  Article  Google Scholar 

  436. 436.

    Goobar, A., Bergström, L., Mörtsell, E.: Measuring the properties of extragalactic dust and implications for the Hubble diagram. Astron. Astrophys. 384, 1–10 (2002)

    ADS  Article  Google Scholar 

  437. 437.

    Milne, P.A., Foley, R.J., Brown, P.J., Narayan, G.: The changing fractions of type Ia supernova NUV–optical subclasses with redshift. Astrophys. J. 803, 20 (2015)

    ADS  Article  Google Scholar 

  438. 438.

    Knop, R.A., Aldering, G., Amanullah, R., et al.: New constraints on \(\Omega _M\), \(\Omega _\Lambda \), and \(w\) from an independent set of 11 high-redshift supernovae observed with the hubble space telescope. Astrophys. J. 598, 102–137 (2003)

    ADS  Article  Google Scholar 

  439. 439.

    Rowan-Robinson, M.: Do type Ia supernovae prove \(\Lambda >0\)? Mon. Not. R. Astron. Soc. 332, 352–360 (2002)

    ADS  Article  Google Scholar 

  440. 440.

    Shanks, T., Allen, P.D., Hoyle, F., Tanvir, N.R.: Cepheid, Tully-Fisher and SNIa distances. arXiv:astro-ph/0102450 (2001)

  441. 441.

    Domínguez, I., Höflich, P., Straniero, O., Wheeler, C.: Evolution of type Ia supernovae on cosmological time scales. Mem. Soc. Astron. Ital. 71, 449–460 (2000)

    ADS  Google Scholar 

  442. 442.

    Howell, D.A., Sullivan, M., Nugent, P.E., et al.: The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308–311 (2006)

    ADS  Article  Google Scholar 

  443. 443.

    Quimby, R., Höflich, P., Craig Wheeler, J.: SN 2005hj: evidence for two classes of normal-bright SNe Ia and implications for cosmology. Astrophys. J. 666, 1083–1092 (2007)

    ADS  Article  Google Scholar 

  444. 444.

    Podsiadlowski, P., Mazzali, P.A., Lesaffre, P., Wolf, C., Forster, F.: Cosmological implications of the second parameter of type Ia supernovae. arXiv:astro-ph/0608324 (2006)

  445. 445.

    Shu, W.-Y.: The geometry of the universe. arXiv:1007.1750 (2010)

  446. 446.

    Romano, A.E.: Lemaitre-Tolman-Bondi universes as alternatives to dark energy: Does positive averaged acceleration imply positive cosmic acceleration? Phys. Rev. D 75(4), 043509 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  447. 447.

    Vishwakarma, R.G., Narlikar, J.V.: Modeling repulsive gravity with creation. J. Astrophys. Astr. 28, 17–27 (2007)

    ADS  Article  Google Scholar 

  448. 448.

    Oliveira, F.J., Hartnett, J.G.: Carmeli’s cosmology fits data for an accelerating and decelerating universe without dark matter or dark energy. Found. Phys. Lett. 19(6), 519–535 (2006)

    MATH  Article  Google Scholar 

  449. 449.

    Thompson, R.I.: Constraints on quintessence and new physics from fundamental constants. Mon. Not. R. Astron. Soc. 422, L67–L71 (2012)

    ADS  Article  Google Scholar 

  450. 450.

    Jackson, J.C., Dodgson, M.: Deceleration without dark matter. Mon. Not. R. Astron. Soc. 285, 806–810 (1997)

    ADS  Article  Google Scholar 

  451. 451.

    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  452. 452.

    Unzicker, A.: Vom Urknall zum Durchknall. Die absurde Jagd nach der Weltformel. Springer, Heidelberg (2010)

    Google Scholar 

  453. 453.

    Melia, F., Shevchuk, A.S.: The \(R_h=ct\) universe. Mon. Not. R. Astron. Soc. 419, 2579–2586 (2012)

    ADS  Article  Google Scholar 

  454. 454.

    Mitra, A.: Why Friedmann cosmology cannot describe the observed universe having pressure and radiation. J. Mod. Phys. 2, 1436–1442 (2011)

    Article  Google Scholar 

  455. 455.

    Constantin, A., Shields, J.C., Hamann, F., Foltz, C.B., Chaffee, F.H.: Emission-line properties of \(z>4\) quasars. Astrophys. J. 565, 50–62 (2002)

    ADS  Article  Google Scholar 

  456. 456.

    Iwamuro, F., Motohara, K., Maihara, T., Kimura, M., Yoshii, Y., Doi, M.: Fe II/Mg II emission-line ratios of QSOs within \(0 < z < 5.3\). Astrophys. J. 565, 63–77 (2002)

    ADS  Article  Google Scholar 

  457. 457.

    Dietrich, M., Hamann, F., Appenzeller, I., Vertergaard, M.: Fe II/Mg II emission-line ratio in high-redshift quasars. Astrophys. J. 596, 817–829 (2003)

    ADS  Article  Google Scholar 

  458. 458.

    Freudling, W., Corbin, M.R., Korista, K.T.: Iron emission in \(z\sim 6\) QSOS. Astrophys. J. Lett. 587, L67–L70 (2003)

    ADS  Article  Google Scholar 

  459. 459.

    Maiolino, R., Juarez, Y., Mujica, R., Nagar, N., Oliva, E.: Early star formation traced by the highest redshift quasars. Astrophys. J. Lett. 596, L155–L158 (2003)

    ADS  Article  Google Scholar 

  460. 460.

    Barth, A.J., Martini, P., Nelson, C.H., Ho, L.C.: Iron emission in the \(z = 6.4\) Quasar SDSS J114816.64+525150.3. Astrophys. J. Lett. 594, L95–L98 (2003)

    ADS  Article  Google Scholar 

  461. 461.

    Sardane, G.M., Turnshek, D.A., Rao, S.M.: Ca II absorbers in the sloan digital sky survey: statistics. Mon. Not. R. Astron. Soc 444, 1747–1758 (2014)

    ADS  Article  Google Scholar 

  462. 462.

    Dunne, L., Eales, S., Ivison, R., Morgan, H., Edmunds, M.: Type II supernovae as a significant source of interstellar dust. Nature 424, 285–287 (2003)

    ADS  Article  Google Scholar 

  463. 463.

    Castro-Rodríguez, N., López-Corredoira, M.: The age of extremely red and massive galaxies at very high redshift. Astron. Astrophys. 537, A31 (2012)

    Article  Google Scholar 

  464. 464.

    Longhetti, M., Saracco, P., Severgnini, P., et al.: Dating the stellar population in massive early-type galaxies at \(z 1.5\). Mon. Not. R. Astron. Soc. 361, 897–906 (2005)

    ADS  Article  Google Scholar 

  465. 465.

    Trujillo, I., Feulner, G., Goranova, Y., et al.: Extremely compact massive galaxies at \(z\sim 1.4\). Mon. Not. R. Astron. Soc. 373, L36–L40 (2006)

    ADS  Article  Google Scholar 

  466. 466.

    Labbé, I., Huang, J., Franx, M., et al.: IRAC mid-infrared imaging of the hubble deep field-south: star formation histories and stellar masses of red galaxies at \(z>2\). Astrophys. J. 624, L81–L84 (2005)

    ADS  Article  Google Scholar 

  467. 467.

    Toft, S., van Dokkum, P., Franx, M., Thompson, R.I., Illingworth, G.D., Bouwens, R.J., Kriek, M.: Distant red galaxies in the hubble ultra deep field. Astrophys. J. 624, L9–L12 (2005)

    ADS  Article  Google Scholar 

  468. 468.

    Rodighiero, G., Cimatti, A., Franceschini, A., Brusa, M., Fritz, J., Bolzonella, M.: Unveiling the oldest and most massive galaxies at very high redshift. Astron. Astrophys. 470, 21–37 (2007)

    ADS  Article  Google Scholar 

  469. 469.

    Wiklind, T., Dickinson, M., Ferguson, H.C., Giavalisco, M., Mobasher, B., Grogin, N.A., Panagia, N.: A population of massive and evolved galaxies at \(z>\sim 5\). Astrophys. J. 686, 781–806 (2008)

    ADS  Article  Google Scholar 

  470. 470.

    Steinhardt, C.L., Capak, P., Masters, D., Speagle, J.S.: The impossible early galaxy problem. Astrophys. J. 824, 21 (2016)

    ADS  Article  Google Scholar 

  471. 471.

    Guo, Q., White, S., Boylan-Kolchin, M., et al.: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a \(\Lambda \)CDM cosmology. Mon. Not. R. Astron. Soc. 413, 101–131 (2011)

    ADS  Article  Google Scholar 

  472. 472.

    Pérez-González, P.G., Rieke, G.H., Villar, V., et al.: The stellar mass assembly of galaxies from \(z = 0\) to \(z = 4\): analysis of a sample selected in the rest-frame near-infrared with spitzer. Astrophys. J. 675, 234–261 (2008)

    ADS  Article  Google Scholar 

  473. 473.

    Riechers, D.A., Bradford, C.M., Clements, D.L., et al.: A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013)

    ADS  Article  Google Scholar 

Download references


Thanks are given to Fulvio Melia and the two anonymous referees for comments on a draft of this paper that helped to improve it. Thanks are given to Terence J. Mahoney for proof-reading of the text.

Author information



Corresponding author

Correspondence to Martín López-Corredoira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

López-Corredoira, M. Tests and Problems of the Standard Model in Cosmology. Found Phys 47, 711–768 (2017). https://doi.org/10.1007/s10701-017-0073-8

Download citation


  • Cosmology
  • Observational cosmology
  • Origin formation and abundances of the elements
  • Dark matter
  • Dark energy
  • Superclusters and large-scale structure of the Universe

Mathematics Subject Classification

  • 85A40
  • 85-03