Foundations of Physics

, Volume 47, Issue 6, pp 711–768 | Cite as

Tests and Problems of the Standard Model in Cosmology

  • Martín López-CorredoiraEmail author


The main foundations of the standard \(\Lambda \)CDM model of cosmology are that: (1) the redshifts of the galaxies are due to the expansion of the Universe plus peculiar motions; (2) the cosmic microwave background radiation and its anisotropies derive from the high energy primordial Universe when matter and radiation became decoupled; (3) the abundance pattern of the light elements is explained in terms of primordial nucleosynthesis; and (4) the formation and evolution of galaxies can be explained only in terms of gravitation within a inflation + dark matter + dark energy scenario. Numerous tests have been carried out on these ideas and, although the standard model works pretty well in fitting many observations, there are also many data that present apparent caveats to be understood with it. In this paper, I offer a review of these tests and problems, as well as some examples of alternative models.


Cosmology Observational cosmology Origin formation and abundances of the elements Dark matter Dark energy Superclusters and large-scale structure of the Universe 

Mathematics Subject Classification

85A40 85-03 



Thanks are given to Fulvio Melia and the two anonymous referees for comments on a draft of this paper that helped to improve it. Thanks are given to Terence J. Mahoney for proof-reading of the text.


  1. 1.
    López-Corredoira, M.: Non-standard models and the sociology of cosmology. Stud. Hist. Philos. Mod. Phys. 46, 86–96 (2014)zbMATHCrossRefGoogle Scholar
  2. 2.
    Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. In: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pp. 142–152. Berlin (1917)Google Scholar
  3. 3.
    Narlikar, J.V., Arp, H.C.: Flat spacetime cosmology: a unified framework for extragalactic redshifts. Astrophys. J. 405, 51–56 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Boehmer, C.G., Hollenstein, L., Lobo, F.S.N.: Stability of the Einstein static universe in f(R) gravity. Phys. Rev. D 76, 084005 (2007)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Van Flandern, T.: Is the gravitational constant changing? In: Taylor, B.N., Phillips, W.D. (eds.) Precision Measurements and Fundamental Constants II, vol. 617, pp. 625–627. National Bureau of Standards Special Publication, Washington, DC (1984)Google Scholar
  6. 6.
    Troitskii, V.S.: Physical constants and evolution of the universe. Astrophys. Space Sci. 139, 389–411 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Van Flandern, T.: Dark Matter, Missing Planets and New Comets. North Atlantic Books, Berkeley (1993)Google Scholar
  8. 8.
    Francis, M.J., Barnes, L.A., James, J.B., Lewis, G.F.: Expanding space: the root of all evil? Publ. Astron. Soc. Aust. 24, 95–102 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Baryshev, YuV: Expanding space: the root of conceptual problems of the cosmological physics. In: Baryshev, YuV, Taganov, I.N., Teerikorpi, P. (eds.) Practical Cosmology, 1, pp. 20–30. TIN, St.-Petersburg (2008)Google Scholar
  10. 10.
    Feynman, R.P., Morinigo, F.B., Wagner, W.G.: Feynman Lectures on Gravitation. Addison-Wesley, Reading, MA (1995)Google Scholar
  11. 11.
    Baryshev, YuV: Field fractal cosmological model as an example of practical cosmology approach. In: Baryshev, YuV, Taganov, I.N., Teerikorpi, P. (eds.) Practical Cosmology, 1, pp. 60–67. TIN, St.-Petersburg (2008)Google Scholar
  12. 12.
    Bondi, H.: Cosmology, 2nd edn. Cambridge University Press, London (1961)zbMATHGoogle Scholar
  13. 13.
    Lemaître, G.: Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. A47, 49–59 (1927) (Translated into English in: Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. R. Astron. Soc. 91, 483–490 (1931))Google Scholar
  14. 14.
    Hubble, E.P.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15, 168–173 (1929)ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Narlikar, J.V.: Noncosmological redshifts. Space Sci. Rev. 50, 523–614 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    Baryshev, YuV, Labini, F.S., Montuori, M., Pietronero, L.: Facts and ideas in modern cosmology. Vistas Astron. 38, 419–500 (1994)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Reboul, H.J.: Untrivial redshifts: a bibliographical catalogue. Astron. Astrophys. Supp. Ser. 45, 129–144 (1981)ADSGoogle Scholar
  18. 18.
    Zwicky, F.: On the red shift of spectral lines through interstellar space. Proc. Natl. Acad. Sci. 15, 773–779 (1929)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Zwicky, F.: Morphological Astronomy. Springer, Berlin (1957)CrossRefGoogle Scholar
  20. 20.
    Steinbring, E.: Are high-redshift quasars blurry? Astrophys. J. 655, 714–717 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Roberts, M.S.: The gaseous content of galaxies (survey Lecture). In: Evans, D.S. (ed.) External Galaxies and Quasi-Stellar Objects (IAU Symp. 44), p. 12. Reidel, Dordrecht (1972)Google Scholar
  22. 22.
    Baryshev, YuV, Teerikorpi, P.: Fundamental Questions of Practical Cosmology. Springer, Dordrecht (2012)CrossRefGoogle Scholar
  23. 23.
    Vigier, J.P.: Alternative interpretation of the cosmological redshift in terms of vacuum gravitational drag. In: Bertola, F., Madore, B., Sulentic, J. (eds.) New Ideas in Astronomy, pp. 257–274. Cambridge University Press, Cambridge (1988)Google Scholar
  24. 24.
    Gallo, C.: A new red shift mechanism with possible applications to astrophysical problems such as quasars. Int. J. Theor. Phys. 13, 417–418 (1975)CrossRefGoogle Scholar
  25. 25.
    Moret-Bailly, J.: The parametric light-matter interactions in astrophysics. In: Lerner, E.J., Almeida, J.B. (eds.), 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 226–238. AIP, Melville (2006)Google Scholar
  26. 26.
    Varshni, Y.P.: The physics of quasars. Phys. Can. 35, 11–17 (1979)Google Scholar
  27. 27.
    Laio, A., Rizzi, G., Tartaglia, A.: Quantum theory of frequency shifts of an electromagnetic wave interacting with a plasma. Phys. Rev. E 55, 7457–7461 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Lerner, E.J.: The Big Bang Never Happened: A Startling Refutation of the Dominant Theory of the Origin of the Universe. Random House, Toronto (1991)Google Scholar
  29. 29.
    Brynjolfsson, A.: Redshift of photons penetrating a hot plasma. arXiv:astro-ph/0401420 (2004)
  30. 30.
    Ashmore, L.: Intrinsic plasma redshifts now reproduced in the laboratory—a discussion in terms of new tired light. 1105.0010 (2011)Google Scholar
  31. 31.
    Weidner, H.: The size and energy loss of a wave packet. (2014)Google Scholar
  32. 32.
    Mamas, D.L.: An explanation for the cosmological redshift. Phys. Essays 23, 326–329 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Wolf, E.: Invariance of the spectrum of light on propagation. Phys. Rev. Lett. 56, 1370–1372 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    Roy, S., Kafatos, M., Datta, S.: Shift of spectral lines due to dynamic multiple scattering and screening effect: implications for discordant redshifts. Astron. Astrophys. 353, 1134–1138 (2000)ADSGoogle Scholar
  35. 35.
    Joos, C., Lutz, J.: Quantum redshift. Paper presented at the Crisis in Cosmology Conference-I, Moncao, Portugal 23–25 June (2005)Google Scholar
  36. 36.
    Crawford, D.: Curvature Cosmology. BrownWalker Press, Boca Raton (2006)Google Scholar
  37. 37.
    Crawford, D.: Observational evidence favors a static universe (part I). J. Cosmol. 13, 3875–3946 (2011)ADSGoogle Scholar
  38. 38.
    Crawford, D.: Observational evidence favors a static universe (part III). J. Cosmol. 13, 4000–4057 (2011)Google Scholar
  39. 39.
    Bondi, H.: Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 107, 410–425 (1947)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Baryshev, YuV: Hierarchical structure of metagalaxy—problem review. Astrofiz. Issled. Izv. Spetsial’noj Astrofiz. Observ. 14, 24 (1981)ADSGoogle Scholar
  41. 41.
    Baryshev, YuV: On the fractal nature of the large-scale structure of the universe. Astron. Astrophys. Trans. 5, 15–23 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    Broberg, H.: The geometry of acceleration in space-time: application to the gravitational field and particles. In: Rudnicki, K. (ed.) Gravitation, Electromagnetism and Cosmology: Toward a New Synthesis. Apeiron, Montreal (2001)Google Scholar
  43. 43.
    Nesvizhevsky, V.V., Börner, H.G., Petukhov, A.K., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Ghosh, A.: Velocity dependent inertial induction: a possible mechanism for cosmological red shift in a quasi static infinite universe. J. Astrophys. Astron. 18, 449–454 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    Barber, G.: A new self creation cosmology. Astrophys. Space Sci. 282, 683–730 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    Barber, G.: The principles of self creation cosmology and its comparison with general relativity. arXiv:gr-qc/0212111 (2002)
  47. 47.
    Barber, G.: Resolving the degeneracy: experimental tests of the new self creation cosmology and a heterodox prediction for gravity probe B. Astrophys. Space Sci. 305, 169–176 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Barber, G.: The derivation of the coupling constant in the new self creation cosmology. arXiv:gr-qc/0302088 (2003)
  49. 49.
    Fischer, E.: Homogeneous cosmological solutions of the Einstein equation. Astrophys. Space Sci. 325, 69–74 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Bouvier, P., Maeder, A.: Consistency of Weyl’s geometry as a framework for gravitation. Astrophys. Space Sci. 54, 497–508 (1978)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Lunsford, D.R.: Gravitation and electrodynamics over SO(3,3). Int. J. Theor. Phys. 43, 161–177 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Krasnov, K., Shtanov, Y.: Non-metric gravity: II. Spherically symmetric solution, missing mass and redshifts of quasars. Class. Quantum Gravity 25, 025002 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Castro, C.: On dark energy, Weyl geometry and Brans-Dicke-Jordan scalar field. 0901.0001 (2009)Google Scholar
  54. 54.
    Ivanov, M.A.: Another origin of cosmological redshifts. arXiv:astro-ph/0405083 (2004)
  55. 55.
    Ivanov, M.A.: Low-energy quantum gravity leads to another picture of the universe In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 187–199. AIP, Melville (2006)Google Scholar
  56. 56.
    Roscoe, D.: Maxwells equations: new light on old problems. Apeiron 13, 206–239 (2006)ADSGoogle Scholar
  57. 57.
    Mosquera Cuesta, H.J., Salim, J.M., Novello,M.: Cosmological redshift and nonlinear electrodynamics propagation of photons from distant sources. arXiv:0710.5188 (2007)
  58. 58.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. II. Dover, New York (1954)zbMATHGoogle Scholar
  59. 59.
    Monti, R.: The electric conductivity of background space. In: Kostro, L., Posiewnik, A., Pykacz, J., Zukowski, M. (eds.) Problems in Quantum Physics, Gdansky 87—Recent and Future Experiments and Interpretations, p. 640. World Scientific, Singapore (1988)Google Scholar
  60. 60.
    von Nernst, W.: The Structure of the Universe in Light of our Research. Jules Springer, Berlin (1921)Google Scholar
  61. 61.
    Alfonso-Faus, A.: Mass-boom versus big-bang: an alternative model. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 107–109. AIP, Melville (2006)Google Scholar
  62. 62.
    Alfonso-Faus, A.: The case for a non-expanding universe. arXiv:0908.1539 (2009)
  63. 63.
    Urbanowski, K.: On a possible quantum contribution to the red shift. In: Baryshev, YuV, Taganov, I.N., Teerikorpi, P. (eds.) Practical Cosmology, 1, pp. 117–122. TIN, St.-Petersburg (2008)Google Scholar
  64. 64.
    Segal, I.E.: Mathematical Cosmology and Extragalactic Astronomy. Academic Press, New York (1976)Google Scholar
  65. 65.
    Segal, I.E., Zhou, Z.: Maxwell’s equations in the Einstein universe and chronometric cosmology. Astrophys. J. Supp. Ser. 100, 307–324 (1995)ADSCrossRefGoogle Scholar
  66. 66.
    Hoyle, F., Narlikar, J.V.: A new theory of gravitation. Proc. R. Soc. London A282, 191–207 (1964)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Narlikar, J.V.: Two astrophysical applications of conformal gravity. Ann. Phys. 107, 325–336 (1977)ADSCrossRefGoogle Scholar
  68. 68.
    Garaimov, V.I.: Time and entropy. In: Holt, S.S., Reynolds, C. S. (eds.) The emergence of cosmic structure (AIP Conf. Proc. 666), pp. 361–364. AIP, Melville (2003)Google Scholar
  69. 69.
    Chen, C.S., Zhou, X.L., Man, B.Y., Zhang, Y.Q., Guo, J.: Investigation of the mechanism of spectral emission and redshifts of atomic line in laser-induced plasmas. Optik 120, 473–478 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    Nguyen, H., Koenig, M., Benredjem, D., Caby, M., Coulaud, G.: Atomic structure and polarization line shift in dense and hot plasmas. Phys. Rev. A 33(2), 1279–1290 (1986)ADSCrossRefGoogle Scholar
  71. 71.
    Mérat, P., Pecker, J.-C., Vigier, J.-P., Yourgrau, W.: Observed deflation of light by the sun as a function of solar distance. Astron. Astrophys. 32, 471–475 (1974)ADSGoogle Scholar
  72. 72.
    Mérat, P., Pecker, J.-C., Vigier, J.-P.: Possible interpretation of an anomalous redsbift observed on the 2292 MHz line emitted by pioneer-6 in the close vicinity of the solar limb. Astron. Astrophys. 30, 167–174 (1974)ADSGoogle Scholar
  73. 73.
    Marmet, P.: Red shift of spectral lines in the sun’s chromosphere. IEEE Trans. Plasma Sci. 17(2), 238–244 (1989)ADSCrossRefGoogle Scholar
  74. 74.
    Dravins, D.: Photospheric spectrum line asymmetries and wavelength shifts. Ann. Rev. Astron. Astrophys. 20, 61–89 (1982)ADSCrossRefGoogle Scholar
  75. 75.
    Sandage, A.: The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136, 319–333 (1962)ADSCrossRefGoogle Scholar
  76. 76.
    Liske, J., Grazian, A., Vanzella, E., et al.: Cosmic dynamics in the era of extremely large telescopes. Mon. Not. R. Astron. Soc. 386, 1192–1218 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    Molaro, P., Levshakov, S.A., Dessauges-Zavadsky, M., D’Odorico, S.: The cosmic microwave background radiation temperature at \(z_{{\rm abs}}=3.025\) toward QSO 0347–3819. Astron. Astrophys. 381, L64–L67 (2002)ADSCrossRefGoogle Scholar
  78. 78.
    Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C., López, S.: The evolution of the cosmic microwave background temperature. Measurements of \(T_{\rm CMB}\) at high redshift from carbon monoxide excitation. Astron. Astrophys 526, L7 (2011)ADSCrossRefGoogle Scholar
  79. 79.
    Krelowski, J., Galazutdinov, G., Gnacinski, P.: CN rotational excitation. Astron. Nachrichten 333, 627–633 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    Sato, M., Reid, M.J., Menten, K.M., Carilli, C.L.: On measuring the cosmic microwave background temperature at redshift 0.89. Astrophys. J. 764, 132 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    Luzzi, G., Génova-Santos, R.T., Martins, C.J.A.P., De Petris, M., Lamagna, L.: Constraining the evolution of the CMB temperature with SZ measurements from Planck data. J. Cosmol. Astropart. Phys. 9, 011 (2015)ADSCrossRefGoogle Scholar
  82. 82.
    Goldhaber, G., Groom, D.E., Kim, A., et al.: Timescale stretch parameterization of type ia supernova B-band light curves. Astrophys. J. 558, 359–368 (2001)ADSCrossRefGoogle Scholar
  83. 83.
    Blondin, S., Davis, T.M., Krisciunas, K., et al.: Time dilation in type Ia supernova spectra at high redshift. Astrophys. J. 682, 724–736 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    Nobili, S., Goobar, A.: The colour-lightcurve shape relation of type Ia supernovae and the reddening law. Astron. Astrophys. 487, 19–31 (2008)ADSCrossRefGoogle Scholar
  85. 85.
    Brynjolfsson, A.: Plasma redshift, time dilation, and supernovas Ia. arXiv:astro-ph/0406437 (2004)
  86. 86.
    Leaning, S.P.: New analysis of observed high redshift supernovae data show that a majority Of SN1a decay lightcurves can be shown to favourably compare with a non dilated restframe template. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 48–59. AIP, Melville (2006)Google Scholar
  87. 87.
    Ashmore, L.: Supernovae Ia light curves show a static universe. 1207.0015 (2012)Google Scholar
  88. 88.
    Holushko, H.: Tired light and type Ia supernovae observations. 1203.0062 (2012)Google Scholar
  89. 89.
    LaViolette, P.A.: Subquantum Kinetics: The Alchemy of Creation, 4th edn. Starlane Publication, Niskayana, NY (2012)Google Scholar
  90. 90.
    Crawford, D.: No evidence of time dilation in gamma-ray burst data. arXiv:0901.4169 (2009)
  91. 91.
    Hawkins, M.R.S.: On time dilation in quasar light curves. Mon. Not. R. Astron. Soc. 405, 1940–1946 (2010)ADSGoogle Scholar
  92. 92.
    Dai, D.-C., Starkman, G.D., Stojkovic, B., Stojkovic, D., Weltman, A.: Using quasars as standard clocks for measuring cosmological redshift. Phys. Rev. Lett. 108, 231302 (2012)ADSCrossRefGoogle Scholar
  93. 93.
    Moresco, M., Cimatti, A., Jiménez, R., et al.: Improved constraints on the expansion rate of the Universe up to \(z\sim 1.1\) from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 8, 6 (2012)ADSCrossRefGoogle Scholar
  94. 94.
    Moresco, M., Pozzetti, L., Cimatti, A., et al.: A 6% measurement of the Hubble parameter at \(z\sim 0.45\): direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 5, 14 (2016)Google Scholar
  95. 95.
    López-Corredoira, M., Vazdekis, A., Gutiérrez, C.M., Castro-Rodríguez, N.: Stellar content of extremely red quiescent galaxies at \(z>2\). Astron. Astrophys. arXiv:1702.00380 (2017)
  96. 96.
    LaViolette, P.A.: Is the universe really expanding? Astrophys. J. 301, 544–553 (1986)ADSCrossRefGoogle Scholar
  97. 97.
    Kowalski, M., Rubin, D., Aldering, G., et al.: Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 686, 749–778 (2008)ADSCrossRefGoogle Scholar
  98. 98.
    Wei, H.: Observational constraints on cosmological models with the updated long gamma-ray bursts. J. Cosm. Astropart. Phys. 8, 20 (2010)ADSCrossRefGoogle Scholar
  99. 99.
    Balázs, L.G., Hetesi, Z., Regály, Z., Csizmadia, S., Bagoly, Z., Horváth, I., Mészáros, A.: A possible interrelation between the estimated luminosity distances and internal extinctions of type Ia supernovae. Astron. Nachr. 327, 917–924 (2006)ADSCrossRefGoogle Scholar
  100. 100.
    Podsiadlowski, P., Mazzali, P., Lesaffre, P., Han, Z., Förster, F.: The nuclear diversity of Type Ia supernova explosions. New Astron. Rev. 52, 381–385 (2008)ADSCrossRefGoogle Scholar
  101. 101.
    Bogomazov, A.I., Tutukov, A.V.: Type Ia supernovae: non-standard candles of the universe. Astron. Rep. 55, 497–504 (2011)ADSCrossRefGoogle Scholar
  102. 102.
    Sorrell, W.H.: Misconceptions about the Hubble recession law. Astrophys. Space Sci. 323, 205–211 (2009) (Erratum: Astrophys. Space Sci. 323, 213 (2009))Google Scholar
  103. 103.
    Lerner, E. J.: Tolman test from \(z=0.1\) to \(z=5.5\): preliminary results challenge the expanding universe model. In: Potter, F. (ed.) Second Crisis in Cosmology Conference (ASP Conf. Ser. 413), pp. 12–23. ASP, St. Francisco (2009)Google Scholar
  104. 104.
    López-Corredoira, M.: Angular-size test on the expansion of the Universe. Int. J. Mod. Phys. D 19, 245–291 (2010)ADSzbMATHCrossRefGoogle Scholar
  105. 105.
    Farley, F.J.M.: Does gravity operate between galaxies? Observational evidence re-examined. Proc. R. Soc. A 466, 3089–3096 (2010)ADSCrossRefGoogle Scholar
  106. 106.
    Marosi, L.A.: Hubble diagram test of expanding and static cosmological models: the case for a slowly expanding flat universe. Adv. Astron. 2013, 917104 (2013)Google Scholar
  107. 107.
    Schwarz, D.J., Weinhorst, B.: (An)isotropy of the Hubble diagram: comparing hemispheres. Astron. Astrophys. 474, 717–729 (2007)ADSCrossRefGoogle Scholar
  108. 108.
    Hubble, E.P., Tolman, R.C.: Two methods of investigating the nature of the nebular redshift. Astrophys. J. 82, 302–337 (1935)ADSzbMATHCrossRefGoogle Scholar
  109. 109.
    Lubin, L.M., Sandage, A.: The Tolman surface brightness test for the reality of the expansion. IV. A measurement of the Tolman signal and the luminosity evolution of early-type galaxies. Astron. J. 122, 1084–1103 (2001)ADSCrossRefGoogle Scholar
  110. 110.
    Lerner, E.J.: Evidence for a non-expanding universe: surface brightness data from HUDF. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 60–74. AIP, Melville (2006)Google Scholar
  111. 111.
    Andrews, T.B.: Falsification of the expanding universe model. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 3–22. AIP, Melville (2006)Google Scholar
  112. 112.
    Lerner, E.J., Falomo, R., Scarpa, R.: UV surface brightness of galaxies from the local Universe to \(z\sim 5\). Int. J. Mod. Phys. D 23, 1450058 (2014)ADSCrossRefGoogle Scholar
  113. 113.
    Hoyle, F.: The relation of radio astronomy to cosmology. In: Bracewell, R.N. (ed.) Radio Astronomy (IAU Symp. 9), pp. 529–533 (1959)Google Scholar
  114. 114.
    Kapahi, V.K.: The angular size-redshift relation as a cosmological tool. In: Hewitt, A., Burbidge, G., Fang, L.-Z. (eds.) Observational Cosmology (IAU Symp. 124), pp. 251–265. Reidel, Dordrecht (1987)Google Scholar
  115. 115.
    Andrews, T.B.: Derivation of the Hubble Redshift and the metric in a static universe. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 123–143. AIP, Melville (2006)Google Scholar
  116. 116.
    Nabokov, N.V., Baryshev, YuV: Classical cosmological tests for galaxies of the hubble ultra deep field. Astrophys. Bull. 63, 244–258 (2008)ADSCrossRefGoogle Scholar
  117. 117.
    Lerner, E.: Surface brightness of galaxies and the evidence against the concordance model. Paper presented at the observational anomalies challenging the Lambda-CDM cosmological model (Special Session 2, EWASS 2015), Tenerife, Spain 22 June 2015.
  118. 118.
    Disney, M.J., Lang, R.H.: The galaxy ancestor problem. Mon. Not. R. Astron. Soc. 426, 1731–1749 (2012)ADSCrossRefGoogle Scholar
  119. 119.
    Valtonen, M., Nilsson, K., Kotilainen, J., Jaakkola, T.: Double radio sources as standard rods of testing cosmological models. In: Proceedings of the 25th Annual Conference of the Finnish Physical Society, Oulu University, Oulu (1991)Google Scholar
  120. 120.
    Nilsson, K., Valtonen, M.J., Kotilainen, J., Jaakkola, T.: On the redshift-apparent size diagram of double radio sources. Astrophys. J. 413, 453–476 (1993)ADSCrossRefGoogle Scholar
  121. 121.
    Pashchenko, I.N., Vitrishchak, V.M.: The use of ultra-compact radio sources for the angular size-redshift cosmological test. Astron. Rep. 55(4), 293–301 (2011)ADSCrossRefGoogle Scholar
  122. 122.
    Holanda, R.F.L., Goncalves, R.S., Alcaniz, J.S.: A test for cosmic distance duality. J. Cosmol. Astropart. Phys. 6, 22 (2012)ADSCrossRefGoogle Scholar
  123. 123.
    Totani, T., Yoshii, Y., Maihara, T., Iwamuro, F., Motohara, K.: Near-infrared faint galaxies in the subaru deep field: comparing the theory with observations for galaxy counts, colors, and size distributions to \(K\sim 24.5\). Astrophys. J. 559, 592–605 (2001)ADSCrossRefGoogle Scholar
  124. 124.
    López-Corredoira, M.: Alcock-Paczyński cosmological test. Astrophys. J. 781, 96 (2014)ADSCrossRefGoogle Scholar
  125. 125.
    Melia, F., López-Corredoira, M.: Alcock-Paczyński cosmological test with model-independent BAO data. Int. J. Mod. Phys. D 26, 1750055 (2017)ADSCrossRefGoogle Scholar
  126. 126.
    Arp, H.C.: QSOs, Redshifts and Controversies. Interstellar Media, Berkeley (1987)Google Scholar
  127. 127.
    Arp, H.C.: Catalogue of Discordant Redshift Associations. Apeiron, Montreal (2003)Google Scholar
  128. 128.
    Burbidge, G.R.: Noncosmological Redshifts. Publ. Astron. Soc. Pac. 113, 899–902 (2001)ADSCrossRefGoogle Scholar
  129. 129.
    Bell, M.B.: Further evidence for large intrinsic redshifts. Astrophys. J. 566, 705–711 (2002)ADSCrossRefGoogle Scholar
  130. 130.
    Bell, M.B.: On quasar distances and lifetimes in a local model. Astrophys. J. 567, 801–810 (2002)ADSCrossRefGoogle Scholar
  131. 131.
    Bell, M.B.: Evidence that quasars and related active galaxies are good radio standard candles and that they are likely to be a lot closer than their redshifts imply. arXiv:astro-ph/0602242 (2006)
  132. 132.
    Bell, M.B.: Further evidence that the redshifts of AGN galaxies may contain intrinsic components. Astrophys. J. Lett. 667, L129–L132 (2007)ADSCrossRefGoogle Scholar
  133. 133.
    López-Corredoira, M., Gutiérrez, C. M.: Research on candidates for non-cosmological redshifts. In: Lerner, E.J., Almeida, J.B. (eds.) 1st Crisis in Cosmology Conference (AIP Conf. Ser. 822(1)), pp. 75–92. AIP, Melville (2006)Google Scholar
  134. 134.
    López-Corredoira, M.: Apparent discordant redshift QSO-galaxy associations. In: Harutyunian, H.A., Mickaelian, A.M., Terzian, Y. (eds.) Evolution of Cosmic Objects Through Their Physical Activity, pp. 196–205. Gitutyun Publ. House of NAS RA, Yerevan (2010)Google Scholar
  135. 135.
    Chu, Y., Zhu, X., Burbidge, G., Hewitt, A.: Statistical evidence for possible association between QSOs and bright galaxies. Astron. Astrophys. 138, 408–414 (1984)ADSGoogle Scholar
  136. 136.
    Zhu, X.F., Chu, Y.Q.: The association between quasars and the galaxies of the Virgo cluster. Astron. Astrophys. 297, 300–304 (1995)ADSGoogle Scholar
  137. 137.
    Burbidge, G.R., Narlikar, J.V., Hewitt, A.: The statistical significance of close pairs of QSOs. Nature 317, 413–415 (1985)ADSCrossRefGoogle Scholar
  138. 138.
    Burbidge, G.R.: The reality of anomalous redshifts in the spectra of some QSOs and its implications. Astron. Astrophys. 309, 9–22 (1996)ADSGoogle Scholar
  139. 139.
    Harutyunian, H.A., Nikogossian, E.H.: Quasars in regions of rich clusters of galaxies. Astrophysics 43(4), 391–402 (2000)ADSCrossRefGoogle Scholar
  140. 140.
    Benítez, N., Sanz, J.L., Martínez-González, E.: Quasar-galaxy associations revisited. Mon. Not. R. Astron. Soc. 320, 241–248 (2001)ADSCrossRefGoogle Scholar
  141. 141.
    Gaztañaga, E.: Correlation between galaxies and quasi-stellar objects in the sloan digital sky survey: a signal from gravitational lensing magnification? Astrophys. J. 589, 82–99 (2003)ADSCrossRefGoogle Scholar
  142. 142.
    Nollenberg, J.G., Williams, L.R.: Galaxy-quasar correlations between APM galaxies and hamburg-ESO QSOs. Astrophys. J. 634, 793–805 (2005)ADSCrossRefGoogle Scholar
  143. 143.
    Bukhmastova, Y.L.: Quasars lensed by globular clusters of spiral and elliptical galaxies. Astron. Lett. 33(6), 355–367 (2007) (Translated from original Russian: Pi’sma v Astronomicheckii Zhurnal 33(6), 403 (2007))Google Scholar
  144. 144.
    Burbidge, G., Napier, W.M.: Associations of high-redshift quasi-stellar objects with active, low-redshift spiral galaxies. Astrophys. J. 706, 657–664 (2009)ADSCrossRefGoogle Scholar
  145. 145.
    López-Corredoira, M.: Pending problems in QSOs. Int. J. Astron. Astrophys. 1(2), 73–82 (2011)CrossRefGoogle Scholar
  146. 146.
    Taganov, I.N.: Quantum Cosmology: Deceleration of Time. TIN, St.-Petersburg (2008)Google Scholar
  147. 147.
    Scranton, R., Ménard, B., Richards, G.T., et al.: Detection of cosmic magnification with the sloan digital sky survey. Astrophys. J. 633, 589–602 (2005)ADSCrossRefGoogle Scholar
  148. 148.
    Primack, J.R.: Precision cosmology. New Astron. Rev. 49, 25–34 (2005)ADSCrossRefGoogle Scholar
  149. 149.
    Gamow, G.: The expanding universe and the origin of galaxies. Kgl. Danske Videnskab Selskab Mat. Fys. Medd. 27(10), 3–15 (1953)Google Scholar
  150. 150.
    Alpher, R.A., Herman, R.: Remarks on the evolution of the expanding universe. Phys. Rev. 75, 1089–1095 (1949)ADSzbMATHCrossRefGoogle Scholar
  151. 151.
    Novikov, I.: Discovery of CMB, sakharov oscillations and polarization of the CMB anisotropy. In: Martínez, V.J., Trimble, V., Pons-Bordería, M.J. (eds.) Historical Development of Modern Cosmology (ASP Conf. Ser. 252), pp. 43–53. Astronomical Society of the Pacific, St. Francisco (2001)Google Scholar
  152. 152.
    Doroshkevich, A.G., Novikov, I.D.: Mean density of radiation in the metagalaxy and certain problems in relativistic cosmology. Sov. Phys.-Dokl. 9, 111–113 (1964) (Translated from original Russian: Dokl. Akad. Nauk. USSR, 154, 809–811 (1964))Google Scholar
  153. 153.
    Van Flandern, T.: Is the microwave radiation really from the big bang ’fireball’? Reflector (Astron. League Newsletter), XLV, 4 (1993)Google Scholar
  154. 154.
    Dicke, R.H., Peebles, P.J.E., Noll, P.G., Wilkinson, D.T.: Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965)ADSCrossRefGoogle Scholar
  155. 155.
    Mather, J.C., Cheng, E.S., Cottingham, D.A., et al.: Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994)ADSCrossRefGoogle Scholar
  156. 156.
    Shmaonov, T.: Pribori i Tekhnika Experimenta (Russia), vol. 1, p. 83 (1957)Google Scholar
  157. 157.
    Herzberg, G.: Spectra of Diatomic Molecules. Van Nostrand, New York (1950)Google Scholar
  158. 158.
    Assis, A.K.T., Neves, M.C.D.: History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron 2, 79–84 (1995)Google Scholar
  159. 159.
    Meyers, R.: A brief history of competing ideologies in cosmology and evidence for non-cosmological redshifts as a case for alternative theoretical interpretations in cosmology. PhD thesis, University of Western Sydney, Sydney (2003)Google Scholar
  160. 160.
    Eddington, A.S.: Internal Constitution of the Stars. Cambridge University Press, Cambridge (1926, reprinted: 1988)Google Scholar
  161. 161.
    Regener, E.: Der Energiestrom der Ultrastrahlung. Zeit. Phys. 80, 666–669 (1933)ADSCrossRefGoogle Scholar
  162. 162.
    Nernst, W.: Weitere prüfung der annahme lines stationären zustandes im weltall. Zeit. Phys. 106, 633–661 (1937)ADSzbMATHCrossRefGoogle Scholar
  163. 163.
    Finley-Freundlich, E.: Red shifts in the spectra of celestial bodies. Phil. Mag. 45, 303–319 (1954)CrossRefGoogle Scholar
  164. 164.
    Born, M.: On the interpretation of Freundlich’s red-shift formula. Proc. Phil. Soc. A67, 193–194 (1954)ADSzbMATHCrossRefGoogle Scholar
  165. 165.
    Peebles, P.J.E.: The Standard Cosmological Model. In: Greco, M. (ed.) Le Rencontres de Physique de la Vallee d’Aoste: Results and Perspectives in Particle Physics, p. 39. Poligrafica Laziale s.r.l., Frascati (1998)Google Scholar
  166. 166.
    Bondi, H., Gold, T., Hoyle, F.: Black giant stars. Obs. Mag. 75, 80–81 (1955)ADSGoogle Scholar
  167. 167.
    Burbidge, G.R.: Nuclear energy generation and dissipation in galaxies. Publ. Astron. Soc. Pac. 70, 83–89 (1958)ADSCrossRefGoogle Scholar
  168. 168.
    Burbidge, G.R.: Explosive cosmogony and the quasi-steady state cosmology. In: Sato, K. (ed.) Cosmological Parameters and the Evolution of the Universe, pp. 286–289. Kluwer, Dordrecht (1999)Google Scholar
  169. 169.
    Hoyle, F., Wickramashinghe, N.C., Reddish, V.C.: Solid hydrogen and the microwave background. Nature 218, 1124–1126 (1968)ADSCrossRefGoogle Scholar
  170. 170.
    Hoyle, F., Burbidge, G., Narlikar, J.V.: A quasi-steady state cosmological model with creation of matter. Astrophys. J. 410, 437–457 (1993)ADSCrossRefGoogle Scholar
  171. 171.
    Hoyle, F., Burbidge, G., Narlikar, J.V.: Astrophysical deductions from the quasi steadystate cosmology. Mon. Not. R. Astron. Soc. 267, 1007–1019 (1994) (Erratum: Mon. Not. R. Astron. Soc., 269, 1152 (1994))Google Scholar
  172. 172.
    Soberman, R.K., Dubin, M.: Dark matter is baryons. arXiv:astro-ph/0107550 (2001)
  173. 173.
    Alfonso-Faus, A., Fullana i Alfonso, M.J.F.: Sources of cosmic microwave radiation and dark matter identified: millimeter black holes (m.b.h.). arXiv:1004.2251 (2010)
  174. 174.
    Clube, S.V.M.: The material vacuum. Mon. Not. R. Astron. Soc. 193, 385–397 (1980)ADSCrossRefGoogle Scholar
  175. 175.
    Sorrell, W.H.: The cosmic microwave background radiation in a non-expanding universe. Astrophys. Space Sci. 317, 59 (2008)ADSCrossRefGoogle Scholar
  176. 176.
    Lorentz, H.A.: Electromagnetic phenomena in a system moving with any velocity less than that of light. Proc. R. Acad. Amst. 6, 809–830 (1904)Google Scholar
  177. 177.
    Lerner, E.J.: Plasma model of microwave background and primordial elements—an alternative to the big bang. Laser Part. Beams 6, 457–469 (1988)ADSCrossRefGoogle Scholar
  178. 178.
    Lerner, E.J.: Intergalactic radio absorption and the COBE data. Astrophys. Space Sci. 227, 61–81 (1995)ADSCrossRefGoogle Scholar
  179. 179.
    Lerner, E.J.: Radio absorption by the intergalactic medium. Astrophys. J. 361, 63–68 (1990)ADSCrossRefGoogle Scholar
  180. 180.
    Lerner, E.J.: Confirmation of radio absorption by the intergalactic medium. Astrophys. Space Sci. 207, 17–26 (1993)ADSCrossRefGoogle Scholar
  181. 181.
    Garrett, M.A.: The FIR/radio correlation of high redshift galaxies in the region of the HDF-N. Astron. Astrophys. 384, L19–L22 (2002)ADSCrossRefGoogle Scholar
  182. 182.
    Mao, M.Y., Huynh, M.T., Norris, R.P., Dickinson, M., Frayer, M., Helou, G., Monkiewick, J.A.: No evidence for evolution in the far-infrared-radio correlation out to z   2 in the extended chandra deep field south. Astrophys. J. 731, 79 (2011)Google Scholar
  183. 183.
    Shpenkov, G.P., Kreidik, G.: Microwave background radiation of hydrogen atoms. Rev. Cienc. Exatas Nat. 4, 9–18 (2002)Google Scholar
  184. 184.
    Krishan, V.: Optical depth of the cosmic microwave background due to scattering and absorption. arXiv:0909.0125 (2009)
  185. 185.
    Crawford, D.: Observational evidence favors a static universe (part II). J. Cosmol. 13, 3947–3999 (2011)Google Scholar
  186. 186.
    Pecker, J.-C., Narlikar, J.V., Ochsenbein, F., Wickramasinghe, C.: The local contribution to the microwave background radiation. Res. Astron. Astrophys. 15, 461 (2015)ADSCrossRefGoogle Scholar
  187. 187.
    Planck Collaboration: Planck early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astron. Astrophys. 536, A10. (2011)Google Scholar
  188. 188.
    López-Corredoira, M., Sylos-Labini, F., Betancort-Rijo, J.: Absence of significant cross-correlation between WMAP and SDSS. Astron. Astrophys. 513, A3 (2010)CrossRefGoogle Scholar
  189. 189.
    Navia, C.E., Augusto, C.R.A., Tsui, K.H.: On the ultra high energy cosmic rays and the origin of the cosmic microwave background radiation. arXiv:0707.1896 (2007)
  190. 190.
    Greisen, K.: End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966)ADSCrossRefGoogle Scholar
  191. 191.
    Zapsepin, G.T., Kuzmin, V.A.: Upper limit of the spectrum of cosmic rays. Sov. Phys. JETP Lett. 4, 78–80 (1966)ADSGoogle Scholar
  192. 192.
    Abraham, R.G., Nair, P., McCarthy, P.J., et al.: The gemini deep deep survey. VIII. When did early-type galaxies form? Astrophys. J. 669, 184–201 (2007)ADSCrossRefGoogle Scholar
  193. 193.
    Kashti, T., Waxman, E.: Searching for a correlation between cosmic-ray sources above \(10^{19}\) eV and large scale structure. J. Cosmol. Astropart. Phys. 5, 6 (2008)ADSCrossRefGoogle Scholar
  194. 194.
    Fahr, H.J., Zönnchen, J.H.: The “writing on the cosmic wall”: is there a straightforward explanation of the cosmic microwave background? Ann. Phys. 521, 699–721 (2009)zbMATHCrossRefGoogle Scholar
  195. 195.
    Li, T.-P., Liu, H., Song, L.-M., Xiong, S.-L., Nie, J.-Y.: Observation number correlation in WMAP data. Mon. Not. R. Astron. Soc. 398, 47–52 (2009)ADSCrossRefGoogle Scholar
  196. 196.
    Roukema, B.F.: On the suspected timing error in Wilkinson microwave anisotropy probe map-making. Astron. Astrophys. 518, A34 (2010)ADSCrossRefGoogle Scholar
  197. 197.
    Liu, H., Xiong, S.-L., Li, T.-P.: Diagnosing timing error in WMAP data. Mon. Not. R. Astron. Soc. 413, L96–L100 (2011)ADSCrossRefGoogle Scholar
  198. 198.
    Cover, K.S.: Sky maps without anisotropies in the cosmic microwave background are a better fit to WMAP’s uncalibrated time ordered data than the official sky maps. Europhys. Lett. 87, 69003 (2009)ADSCrossRefGoogle Scholar
  199. 199.
    Sachs, R.K., Wolfe, A.M.: Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73–90 (1967)ADSCrossRefGoogle Scholar
  200. 200.
    de Bernardis, P., Ade, P.A.R., Bock, J.J., et al.: A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)ADSCrossRefGoogle Scholar
  201. 201.
    Hanany, S., Ade, P., Balbi, A., et al.: MAXIMA-1: a measurement of the cosmic microwave background anisotropy on angular scales of 10’-5\(^\circ \). Astrophys. J. Lett. 545, L5–L9 (2000)ADSCrossRefGoogle Scholar
  202. 202.
    Hu, W., Dodelson, S.: Cosmic microwave background anisotropies. Ann. Rev. Astron. Astrophys. 40, 171–216 (2002)ADSCrossRefGoogle Scholar
  203. 203.
    Peebles, P.J.E., Yu, J.T.: Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815–836 (1970)ADSCrossRefGoogle Scholar
  204. 204.
    White, M., Viana, P.T.P., Liddle, A.R., Scott, D.: Primeval adiabatic perturbation in an expanding universe. Mon. Not. R. Astron. Soc. 283, 107–118 (2006)ADSCrossRefGoogle Scholar
  205. 205.
    Bond, J.R., Efstathiou, G.: The statistics of cosmic background radiation fluctuations. Mon. Not. R. Astron. Soc. 226, 655–687 (1987)ADSCrossRefGoogle Scholar
  206. 206.
    Jorgensen, H.E., Kotok, E., Naselsky, P., Novikov, I.: Evidence for Sakharov oscillations of initial perturbations in the anisotropy of the cosmic microwave background. Astron. Astrophys. 294, 639–647 (1995)ADSGoogle Scholar
  207. 207.
    Hu, W., Fukugita, M., Zaldarriaga, M., Tegmark, M.: Cosmic microwave background observables and their cosmological implications. Astrophys. J. 549, 669–680 (2001)ADSCrossRefGoogle Scholar
  208. 208.
    Larson, D., Dunkley, J., Hinshaw, G., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. Ser. 192, 16 (2011)ADSCrossRefGoogle Scholar
  209. 209.
    Blanchard, A., Douspis, M., Rowan-Robinson, M., Sarkar, S.: An alternative to the cosmological “concordance model”. Astron. Astrophys. 412, 35–44 (2003)ADSzbMATHCrossRefGoogle Scholar
  210. 210.
    Peiris, H.: First year Wilkinson microwave anisotropy probe results: implications for cosmology and inflation. Contemp. Phys. 46(2), 77–91 (2005)ADSCrossRefGoogle Scholar
  211. 211.
    Disney, M.J.: Modern cosmology: science or folktale? Am. Sci. 95(5), 383–385 (2007)Google Scholar
  212. 212.
    Jefferys, H., Berger, J.: Ockham’s Razor and Bayesian analysis. Am. Sci. 80(1), 64–72 (1992)ADSGoogle Scholar
  213. 213.
    Berger, J.O., Jefferys, W.H.: The application of Robust Bayesian analysis to hypothesis testing and Occam’s Razor. J. Ital. Stat. Soc. 1, 17–32 (1992)zbMATHCrossRefGoogle Scholar
  214. 214.
    Gil, F.J.: Modelos cosmológicos: ¿Ficciones útiles o descripciones realistas del universo? Thémata 40, 117–146 (2008)Google Scholar
  215. 215.
    López-Corredoira, M., Gabrielli, A.: Peaks in the CMBR power spectrum. I. Mathematical analysis of the associated real space features. Phys. A 392, 474–484 (2013)CrossRefGoogle Scholar
  216. 216.
    López-Corredoira, M.: Peaks in the CMBR power spectrum II: physical interpretation for any cosmological scenario. Int. J. Mod. Phys. D 22(7), 1350032 (2013)CrossRefGoogle Scholar
  217. 217.
    Narlikar, J.V., Vishwakarma, R.G., Hajian, A., Souradeep, T., Burbidge, G., Hoyle, F.: Inhomogeneities in the microwave background radiation interpreted within the framework of the quasi-steady state cosmology. Astrophys. J. 585, 1–11 (2003)ADSCrossRefGoogle Scholar
  218. 218.
    Narlikar, J.V., Burbidge, G., Vishwakarma, R.G.: Cosmology and cosmogony in a cyclic universe. J. Astrophys. Astron. 28, 67–99 (2007)ADSCrossRefGoogle Scholar
  219. 219.
    Walker, M., Ohishi, M., Mori, M.: Microwave anisotropies from the Galactic halo. arXiv:astro-ph/0210483 (2002)
  220. 220.
    McGaugh, S.S.: Confrontation of modified newtonian dynamics predictions with Wilkinson microwave anisotropy probe first year data. Astrophys. J. 611(26–39), 26 (2004)ADSCrossRefGoogle Scholar
  221. 221.
    Angus, G.W., Diaferio, A.: The abundance of galaxy clusters in modified Newtonian dynamics: cosmological simulations with massive neutrinos. Mon. Not. R. Astron. Soc. 417, 941–949 (2011)ADSCrossRefGoogle Scholar
  222. 222.
    Dodelson, S.: Coherent phase argument for inflation. In: Nieves, J.F., Raymond, R. (eds.) Neutrinos, Flavor Physics and Precision Cosmology (AIP Conf. Proc. 689), pp. 184–196. AIP, Melville, New York (2003)Google Scholar
  223. 223.
    Coulson, D., Ferreira, P., Graham, P., Turok, N.: Microwave anisotropies from cosmic defects. Nature 368, 27–31 (1994)ADSCrossRefGoogle Scholar
  224. 224.
    López-Corredoira, M.: Some doubts on the validity of the foreground galactic contribution subtraction from microwave anisotropies. J. Astrophys. Astron. 28, 101–116 (2007)ADSCrossRefGoogle Scholar
  225. 225.
    Ferreira, P.G., Magueijo, J., Górski, K.M.: Evidence for non-Gaussianity in the COBE DMR 4 year sky maps. Astrophys. J. Lett. 503, L1–L4 (1998)ADSCrossRefGoogle Scholar
  226. 226.
    Pando, J., Valls-Gabaud, D., Fang, L.-Z.: Evidence for scale-scale correlations in the cosmic microwave background radiation. Phys. Rev. Lett. 81(21), 4568–4571 (1998)ADSCrossRefGoogle Scholar
  227. 227.
    Jeong, E., Smoot, G.F.: Probing non-Gaussianity in the cosmic microwave background anisotropies: one point distribution function. arXiv:0710.2371 (2007)
  228. 228.
    Raeth, C., Schuecker, P., Banday, A.J.: A scaling index analysis of the Wilkinson microwave anisotropy probe three-year data: signatures of non-Gaussianities and asymmetries in the cosmic microwave background. Mon. Not. R. Astron. Soc. 380, 466–478 (2007)ADSCrossRefGoogle Scholar
  229. 229.
    Bernui, A., Tsallis, C., Villela, T.: Deviation from Gaussianity in the cosmic microwave background temperature fluctuations. Europhys. Lett. 78(1), 19001 (2007)ADSCrossRefGoogle Scholar
  230. 230.
    McEwen, J.D., Hobson, M.P., Lasenby, A.N., Mortlock, D.J.: A high-significance detection of non-Gaussianity in the WMAP 5-yr data using directional spherical wavelets. Mon. Not. R. Astron. Soc. 388, 659–662 (2008)ADSCrossRefGoogle Scholar
  231. 231.
    Rossi, G., Sheth, R.K., Park, C., Hernández-Monteagudo, C.: Non-Gaussian distribution and clustering of hot and cold pixels in the five-year WMAP sky. Mon. Not. R. Astron. Soc. 399, 304–316 (2009)ADSCrossRefGoogle Scholar
  232. 232.
    Rubiño-Martín, J.A., Aliaga, A.M., Barreiro, R.B., et al.: Non-Gaussianity in the very small array cosmic microwave background maps with smooth goodness-of-fit tests. Mon. Not. R. Astron. Soc. 369, 909–920 (2006)ADSCrossRefGoogle Scholar
  233. 233.
    McEwen, J.D., Hobson, M.P., Lasenby, A.N., Mortlock, D.J.: A high-significance detection of non-Gaussianity in the WMAP 3-yr data using directional spherical wavelets. Mon. Not. R. Astron. Soc. 371, L50–L54 (2006)ADSCrossRefGoogle Scholar
  234. 234.
    Liu, X., Zhang, S.N.: Non-Gaussianity due to possible residual foreground signals in Wilkinson microwave anistropy probe first-year data using spherical wavelet approaches. Astrophys. J. 633, 542–551 (2005)ADSCrossRefGoogle Scholar
  235. 235.
    Tojeiro, R., Castro, P.G., Heavens, A.F., Gupta, S.: Non-Gaussianity in the Wilkinson microwave anisotropy probe data using the peak-peak correlation function. Mon. Not. R. Astron. Soc. 365, 265–275 (2006)ADSCrossRefGoogle Scholar
  236. 236.
    Chiang, L.-Y., Naselsky, P.D., Coles, P.: Departure from Gaussianity of the cosmic microwave background temperature anisotropies in the three-year WMAP data. Astrophys. J. 664, 8–13 (2007)ADSCrossRefGoogle Scholar
  237. 237.
    Gutierrez de La Cruz, C.M., Davies, R.D., Rebolo, R., Watson, R.A., Hancock, S., Lasenby, A.N.: Dual-frequency mapping with the Tenerife cosmic microwave background experiments. Mon. Not. R. Astron. Soc. 442, 10–22 (1995)ADSGoogle Scholar
  238. 238.
    Davies, R.D., Gutiérrez, C.M., Hopkins, J., et al.: Studies of cosmic microwave background structure at Dec.=+40 deg - I. The performance of the Tenerife experiments. Mon. Not. R. Astron. Soc. 278, 883–896 (1996)ADSCrossRefGoogle Scholar
  239. 239.
    Bennett, C.L., Hill, R.S., Hinshaw, G., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: foreground emission. Astrophys. J. Supp. Ser. 148, 97–117 (2003)ADSCrossRefGoogle Scholar
  240. 240.
    Leitch, E.M., Readhead, A.C.S., Pearson, T.J., Myers, S.T., Gulkis, S., Lawrence, C.R.: A measurement of anisotropy in the cosmic microwave background on 7’-22’ scales. Astrophys. J. 532, 37–56 (2000)ADSCrossRefGoogle Scholar
  241. 241.
    Kogut, A., Banday, A.J., Bennett, C.L., et al.: High-latitude galactic emission in the COBE differential microwave radiometer 2 year sky maps. Astrophys. J. 460, 1–9 (1996)ADSCrossRefGoogle Scholar
  242. 242.
    Finkbeiner, D.P., Langston, G.I., Minter, A.H.: Microwave interstellar medium emission in the green bank galactic plane survey: evidence for spinning dust. Astrophys. J. 617, 350–359 (2004)ADSCrossRefGoogle Scholar
  243. 243.
    Fernández-Cerezo, S., Gutiérrez, C.M., Rebolo, R., et al.: Observations of the cosmic microwave background and galactic foregrounds at 12–17GHz with the COSMOSOMAS experiment. Mon. Not. R. Astron. Soc. 370, 15 (2006)ADSCrossRefGoogle Scholar
  244. 244.
    Casassus, S., Readhead, A.C.S., Pearson, T.J., Nyman, L.-A., Shepherd, M.C., Bronfman, L.: Anomalous radio emission from dust in the helix. Astrophys. J. 603, 599–610 (2004)ADSCrossRefGoogle Scholar
  245. 245.
    Watson, R.A., Rebolo, R., Rubiño-Martín, J.A., Hildebrandt, S., Gutiérrez, C.M., Fernández-Cerezo, S., Hoyland, R.J., Battistelli, E.S.: Detection of anomalous microwave emission in the perseus molecular cloud with the COSMOSOMAS Experiment. Astrophys. J. Lett. 624, L89–L92 (2005)ADSCrossRefGoogle Scholar
  246. 246.
    de Oliveira-Costa, A., Tegmark, M., Gutiérrez, C.M., Jones, A.W., Davies, R.D., Lasenby, A.N., Rebolo, R., Watson, R.A.: Cross-correlation of tenerife data with galactic templates-evidence for spinning dust? Astrophys. J. Lett. 527, L9–L12 (1999)ADSCrossRefGoogle Scholar
  247. 247.
    de Oliveira-Costa, A., Tegmark, M., Finkbeiner, D.P., et al.: A new spin on galactic dust. Astrophys. J. 567, 363–369 (2002)ADSCrossRefGoogle Scholar
  248. 248.
    Draine, B.T., Lazarian, A.: Diffuse galactic emission from spinning dust grains. Astrophys. J. Lett. 494, L19–L22 (1998)ADSCrossRefGoogle Scholar
  249. 249.
    Draine, B.T., Lazarian, A.: Magnetic dipole microwave emission from dust grains. Astrophys. J. 512, 740–754 (1999)ADSCrossRefGoogle Scholar
  250. 250.
    Pietrobon, D., Górski, K.M., Bartlett, J., et al.: Analysis of WMAP 7 year temperature data: astrophysics of the galactic haze. Astrophys. J. 755, 69 (2012)ADSCrossRefGoogle Scholar
  251. 251.
    Finkbeiner, D.P., Davis, M., Schlegel, D.J.: Extrapolation of galactic dust emission at 100 microns to cosmic microwave background radiation frequencies using FIRAS. Astrophys. J. 524, 867–886 (1999)ADSCrossRefGoogle Scholar
  252. 252.
    López-Corredoira, M.: A conspicuous increase of galactic contamination over CMBR anisotropies at large angular scales. Astron. Astrophys. 346, 369–382 (1999)ADSGoogle Scholar
  253. 253.
    Bottino, M., Banday, A.J., Maino, D.: Foreground analysis of the Wilkinson microwave anisotropy probe 3-yr data with FASTICA. Mon. Not. R. Astron. Soc. 389, 1190–1208 (2008)ADSCrossRefGoogle Scholar
  254. 254.
    Schlegel, D.J., Finkbeiner, D.P., Davis, M.: Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998)ADSCrossRefGoogle Scholar
  255. 255.
    Masi, S., Ade, P.A.R., Bock, J.J., et al.: High-latitude galactic dust emission in the BOOMERANG maps. Astrophys. J. Lett. 553, L93–L96 (2001)ADSCrossRefGoogle Scholar
  256. 256.
    Ade, P.A., et al.: Planck collaboration: planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 594, A1 (2016)CrossRefGoogle Scholar
  257. 257.
    Axelsson, M., Ihle, H.T., Scodeller, S., Hansen, F.K.: Testing for foreground residuals in the Planck foreground cleaned maps: a new method for designing confidence masks. Astron. Astrophys. 578, A44 (2015)ADSCrossRefGoogle Scholar
  258. 258.
    Kiss, C., Ábrahám, P., Klaas, U., Lemke, D., Héraudeau, P., del Burgo, C., Herbstmeier, U.: Small-scale structure of the galactic cirrus emission. Astron. Astrophys. 399, 177–185 (2003)ADSCrossRefGoogle Scholar
  259. 259.
    Ade, P.A.: Planck collaboration: planck early results. XXIII. The first all-sky survey of galactic cold clumps. Astron. Astrophys. 539, A23 (2011)Google Scholar
  260. 260.
    Tegmark, M.: Removing real-world foregrounds from cosmic microwave background maps. Astrophys. J. 502, 1–6 (1998)ADSMathSciNetCrossRefGoogle Scholar
  261. 261.
    Robitaille, P.-M.: WMAP: a radiological analysis. Prog. Phys. 1(2007), 3–18 (2007)Google Scholar
  262. 262.
    Eriksen, H.K., Banday, A.J., Górski, K.M., Lilje, P.B.: On foreground removal from the Wilkinson microwave anisotropy probe data by an internal linear combination method: limitations and implications. Astrophys. J. 612, 633–646 (2004)ADSCrossRefGoogle Scholar
  263. 263.
    Eriksen, H.K., Banday, A.J., Górski, K.M., Lilje, P.B.: Astro-ph communication: simulations of the WMAP internal linear combination sky map. arXiv:astro-ph/0508196 (2005)
  264. 264.
    Vio, R., Andreani, P.: A statistical analysis of the “internal linear combination” method in problems of signal separation as in cosmic microwave background observations. Astron. Astrophys. 487, 775–780 (2008)ADSCrossRefGoogle Scholar
  265. 265.
    Hansen, F.K., Banday, A.J., Eriksen, H.K., Górski, K.M., Lilje, P.B.: Foreground subtraction of cosmic microwave background maps using WI-FIT (wavelet-based high-resolution fitting of internal templates). Astrophys. J. 648, 784–796 (2006)ADSCrossRefGoogle Scholar
  266. 266.
    Naselsky, P.D., Novikov, I.G., Chiang, L.-Y.: Correlations from galactic foregrounds in the first-year Wilkinson microwave anisotropy probe data. Astrophys. J. 642, 617–624 (2006)ADSCrossRefGoogle Scholar
  267. 267.
    de Oliveira-Costa, A., Tegmark, M.: CMB multipole measurements in the presence of foregrounds. Phys. Rev. D 74(2), 023005 (2006)ADSCrossRefGoogle Scholar
  268. 268.
    Then, H.: Foreground contamination of the WMAP CMB maps from the perspective of the matched circle test. Mon. Not. R. Astron. Soc. 373, 139–145 (2006)ADSCrossRefGoogle Scholar
  269. 269.
    Samal, P.K., Saha, R., Jain, P., Ralston, J.P.: Testing isotropy of cosmic microwave background radiation. Mon. Not. R. Astron. Soc. 385, 1718–1728 (2008)ADSCrossRefGoogle Scholar
  270. 270.
    Liu, X., Zhang, S.N.: A cross-correlation analysis of WMAP and EGRET data in wavelet space. Astrophys. J. Lett. 636, L1–L4 (2006)ADSCrossRefGoogle Scholar
  271. 271.
    Verschuur, G.L.: High galactic latitude interstellar neutral hydrogen structure and associated (WMAP) high-frequency continuum emission. Astrophys. J. 671, 447–457 (2007)ADSCrossRefGoogle Scholar
  272. 272.
    Sarkar, S.: Does the galactic synchrotron radio background originate in old supernova remnants. Mon. Not. R. Astron. Soc. 199, 97–108 (1982)ADSCrossRefGoogle Scholar
  273. 273.
    Sarkar, S.: Galactic foregrounds for the CMB. Paper (PoS(FFP14)095) presented at the Frontiers of Fundamental Physics, Marseille, France, 15–18 July (2014)Google Scholar
  274. 274.
    Liu, H., Mertsch, P., Sarkar, S.: Fingerprints of galactic loop I on the cosmic microwave background. Astrophys. J. Lett. 789, L29 (2014)ADSCrossRefGoogle Scholar
  275. 275.
    Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D.: On the large-angle anomalies of the microwave sky. Mon. Not. R. Astron. Soc. 367, 79–102 (2006)ADSCrossRefGoogle Scholar
  276. 276.
    Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D.: Uncorrelated universe: statistical anisotropy and the vanishing angular correlation function in WMAP years 1-3. Phys. Rev. D 75(2), 23507 (2007)ADSCrossRefGoogle Scholar
  277. 277.
    Su, S.-C., Chu, M.-C.: New anomalies in cosmic microwave background anisotropy: violation of the isotropic Gaussian hypothesis in low-\(\ell \) modes. arXiv:0805.1316 (2008)
  278. 278.
    Starkman, G.D., Copi, C.J., Huterer, D., Schwarz, D.: The Oddly Quiet Universe: How the CMB challenges cosmology’s standard model. arXiv:1201.2459 (2012)
  279. 279.
    Rakić, A., Schwarz, D.J.: Correlating anomalies of the microwave sky. Phys. Rev. D 75(10), 103002 (2007)ADSCrossRefGoogle Scholar
  280. 280.
    Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D.: No large-angle correlations on the non-Galactic microwave sky. Mon. Not. R. Astron. Soc. 399, 295–303 (2009)ADSCrossRefGoogle Scholar
  281. 281.
    Liu, H., Li, T.-P.: Missing completely of CMB quadrupole in WMAP data. Chin. Sci. Bull. 58, 1243–1249 (2013)CrossRefGoogle Scholar
  282. 282.
    Eriksen, H.K., Hansen, F.K., Banday, A.J., Górski, K.M., Lilje, P.B.: Asymmetries in the cosmic microwave background anisotropy field. Astrophys. J. 605, 14–20 (2004)ADSCrossRefGoogle Scholar
  283. 283.
    Jiang, B.-Z., Lieu, R., Zhang, S.-N., Wakker, B.: Significant foreground unrelated non-acoustic anisotropy on the 1 degree scale in wilkinson microwave anisotropy probe 5-year observations. Astrophys. J. 708, 375–380 (2010)ADSCrossRefGoogle Scholar
  284. 284.
    Bennett, C.L., Hill, R.S., Hinshaw, G., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: are there cosmic microwave background anomalies? Astrophys. J. Supp. Ser. 192, 17 (2011)ADSCrossRefGoogle Scholar
  285. 285.
    Ade, P.A., et al.: Planck collaboration: Planck 2015 results. XVI. Isotropy and statistics of the CMB. Astron. Astrophys. 594, A16 (2016)CrossRefGoogle Scholar
  286. 286.
    Chyzy, K.T., Novosyadlyj, B., Ostrowski, M.: Gradient and dispersion analyses of the WMAP data. arXiv:astro-ph/0512020 (2005)
  287. 287.
    Abramo, L.R., Sodre Jr., L., Wuensche, C.A.: Anomalies in the low CMB multipoles and extended foregrounds. Phys. Rev. D 74(8), 83515 (2006)ADSCrossRefGoogle Scholar
  288. 288.
    Sharpe, H.N.: Heliosheath synchrotron radiation as a possible source for the arcade 2 CMB distortions. arXiv:0902.0181 (2009)
  289. 289.
    Sharpe, H.N.: A model for the WMAP anomalous ecliptic plane signal. arXiv:0904.1697 (2009)
  290. 290.
    Sharpe, H.N.: A Heliosheath Model for the Origin of the CMB Quadrupole Moment. arXiv:0905.2978 (2009)
  291. 291.
    Meliá, F.: Cosmological implications of the CMB large-scale structure. Astron. J. 149, 6 (2015)ADSCrossRefGoogle Scholar
  292. 292.
    Lieu, R., Mittaz, J.P.D.: On the absence of gravitational lensing of the cosmic microwave background. Astrophys. J. 628, 583–593 (2005)ADSCrossRefGoogle Scholar
  293. 293.
    Lieu, R., Mittaz, J.P.D., Zhang, S.-N.: The Sunyaev-Zel’dovich effect in a sample of 31 clusters: a comparison between the X-ray predicted and WMAP observed cosmic microwave background temperature decrement. Astrophys. J. 648, 176–199 (2006)ADSCrossRefGoogle Scholar
  294. 294.
    Bonamente, M., Joy, M.K., LaRoque, S.J., Carlstrom, J.E., Reese, E.D., Dawson, K.S.: Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25–54 (2006)ADSCrossRefGoogle Scholar
  295. 295.
    Lieu, R., Quenby, J., Bonamente, M.: The non-thermal intracluster medium. Astrophys. J. 721, 1482–1491 (2010)ADSCrossRefGoogle Scholar
  296. 296.
    Burbidge, G.R.: Was there really a big bang? Nature 233, 36 (1971)ADSCrossRefGoogle Scholar
  297. 297.
    Burbidge, G.R., Hoyle, F.: The origin of helium and the other light elements. Astrophys. J. Lett. 509, L1–L3 (1998)ADSCrossRefGoogle Scholar
  298. 298.
    Salvaterra, R., Ferrara, A.: Is primordial \(^4\)He truly from the big bang? Mon. Not. R. Astron. Soc. 340, L17–L20 (2003)ADSCrossRefGoogle Scholar
  299. 299.
    Schramm, D.N., Turner, M.S.: Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys. 70, 303–318 (1998)ADSCrossRefGoogle Scholar
  300. 300.
    Izotov, Y.I., Thuan, T.X.: The primordial abundance of \(^4\)He: evidence for non-standard big bang nucleosynthesis. Astrophys. J. Lett. 710, L67–L71 (2010)ADSCrossRefGoogle Scholar
  301. 301.
    Terlevich, E., Terlevich, R., Skillman, E., Stepanian, J., Lipovetskii, V.: The extremely low he abundance of SBS:0335–052. In: Edmunds, M.G., Terlevich, R. (eds.) Elements and the Cosmos, pp. 21–27. Cambridge University Press, Cambridge (1992)Google Scholar
  302. 302.
    Sargent, W.L.W., Searle, L.: The interpretation of the helium weakness in halo stars. Astrophys. J. Lett. 150, L33–L37 (1967)ADSCrossRefGoogle Scholar
  303. 303.
    Casagrande, L., Flynn, C., Portinari, L., Girardi, L., Jiménez, R.: The helium abundance and \(\Delta Y/\Delta Z\) in lower main-sequence stars. Mon. Not. R. Astron. Soc. 382, 1516–1540 (2007)ADSCrossRefGoogle Scholar
  304. 304.
    Ryan, S.G., Beers, T.C., Olive, K.A., Fields, B.D., Norris, J.E.: Primordial lithium and big bang nucleosynthesis. Astrophys. J. Lett. 530, L57–L60 (2000)ADSCrossRefGoogle Scholar
  305. 305.
    Coc, A., Goriley, S., Xu, Y., Saimpert, M., Vangioni, E.: Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network. Astrophys. J. 744, 158 (2012)ADSCrossRefGoogle Scholar
  306. 306.
    Famaey, B., McGaugh, S.: Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Liv. Rev. Relat. 15, 10 (2012)CrossRefGoogle Scholar
  307. 307.
    Cyburt, R.H., Fields, B.D., Olive, K.A.: An update on the big bang nucleosynthesis prediction for \(^7\)Li: the problem worsens. J. Cosmol. Astropart. Phys. 11, 12 (2008)ADSCrossRefGoogle Scholar
  308. 308.
    Korn, A.J., Grundahl, F., Richard, O., Barklem, P.S., Mashonkina, L., Collet, R., Piskunov, N., Gustafsson, B.: A probable stellar solution to the cosmological lithium discrepancy. Nature 442, 657–659 (2006)ADSCrossRefGoogle Scholar
  309. 309.
    Howk, J.C., Lehner, N., Fields, B.D., Mathews, G.J.: Observation of interstellar lithium in the low-metallicity small magellanic cloud. Nature 489, 121–123 (2012)ADSCrossRefGoogle Scholar
  310. 310.
    Vidal-Madjar, A., Ferlet, R., Lemoine, M.: Deuterium abundance and cosmology. In: Brandt, J.C., Ake, T.B. III, Petersen, C.C. (eds.) The Scientific Impact of the Goddard High Resolution Spectrograph (ASP Conf. Series, 143), pp. 3–17. Astron. Soc of the Pacific, St. Francisco (1998)Google Scholar
  311. 311.
    Prodanovic, T., Fields, B.D.: On nonprimordial deuterium production by accelerated particles. Astrophys. J. 597, 48–56 (2003)ADSCrossRefGoogle Scholar
  312. 312.
    Casuso, E., Beckman, J.E.: Beryllium and boron evolution in the galaxy. Astrophys. J. 475, 155–162 (1997)ADSCrossRefGoogle Scholar
  313. 313.
    Boyd, R., Kajino, T.: Can Be-9 provide a test of cosmological theories? Astrophys. J. Lett. 336, L55–L58 (1989)ADSCrossRefGoogle Scholar
  314. 314.
    Hata, N., Scherrer, R.J., Steigman, G., Thomas, D., Walker, T.P., Bludman, S., Langacker, P.: Big bang nucleosynthesis in crisis? Phys. Rev. Lett. 75, 3977–3980 (1995)ADSCrossRefGoogle Scholar
  315. 315.
    Kurucz, R.L.: Gedanken astrophysics: the universe since recombination. Comm. Astrophys. 16, 1–15 (1992)ADSGoogle Scholar
  316. 316.
    Takei, Y., Henry, J.P., Finoguenov, A., Mitsuda, K., Tamura, T., Fujimoto, R., Briel, U.G.: Warm-hot intergalactic medium associated with the coma cluster. Astrophys. J. 655, 831–842 (2007)ADSCrossRefGoogle Scholar
  317. 317.
    Anderson, M.E., Bregman, J.N.: Do hot halos around galaxies contain the missing baryons? Astrophys. J. 714, 320–331 (2010)ADSCrossRefGoogle Scholar
  318. 318.
    McGaugh, S.S., Schombert, J.M., de Blok, W.J.G., Zagursky, M.J.: The baryon content of cosmic structures. Astrophys. J. Lett. 708, L14–L17 (2010)ADSCrossRefGoogle Scholar
  319. 319.
    Eckert, D., Jauzac, M., Shan, H., et al.: Warm hot baryons comprise 510 per cent of filaments in the cosmic web. Nature 528, 105–107 (2015)ADSCrossRefGoogle Scholar
  320. 320.
    Becker, R.H., Fan, X., White, R.L., et al.: Evidence for reionization at \(z\sim 6\): detection of a Gunn-Peterson trough in a \(z=6.28\) quasar. Astron. J. 122, 2850–2857 (2001)ADSCrossRefGoogle Scholar
  321. 321.
    Fan, X., Narayanan, V.K., Lupton, R.H., et al.: A survey of \(z>5.8\) quasars in the sloan digital sky survey. I. Discovery of three new quasars and the spatial density of luminous quasars at \(z\sim 6\). Astron. J. 122, 2833–2849 (2001)ADSCrossRefGoogle Scholar
  322. 322.
    Malhotra, S., Rhoads, J.: Luminosity functions of Ly\(\alpha \) Emitters at redshifts \(z=6.5\) and \(z=5.7\): evidence against reionization at \(z<=6.5\). Astrophys. J. Lett. 617, L5–L8 (2004)ADSCrossRefGoogle Scholar
  323. 323.
    Jarosik, N., Bennett, C.L., Dunkley, J., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results. Astrophys. J. Supp. Ser. 192, 14 (2011)ADSCrossRefGoogle Scholar
  324. 324.
    Ade, P.A., et al.: Planck collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)CrossRefGoogle Scholar
  325. 325.
    Bunker, A.J., Wilkins, S., Ellis, R.S., et al.: The contribution of high-redshift galaxies to cosmic reionization: new results from deep WFC3 imaging of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. 409, 855–866 (2010)ADSCrossRefGoogle Scholar
  326. 326.
    Bouwens, R.J., Illingworth, G.D., Labbe, I., et al.: A candidate redshift \(z\sim 10\) galaxy and rapid changes in that population at an age of 500 Myr. Nature 469, 504–507 (2011)ADSCrossRefGoogle Scholar
  327. 327.
    Dopita, M.A., Krauss, L.M., Sutherland, R.S., Kobayashi, C., Lineweaver, C.H.: Re-ionizing the universe without stars. Astrophys. Space Sci. 335, 345–352 (2011)ADSCrossRefGoogle Scholar
  328. 328.
    Battaner, E., Florido, E., Jiménez-Vicente, J.: Magnetic fields and large scale structure in a hot universe. I. General equations. Astron. Astrophys. 326, 13–22 (1997)ADSGoogle Scholar
  329. 329.
    Florido, E., Battaner, E.: Magnetic fields and large-scale structure in a hot universe. II. Magnetic flux tubes and filamentary structure. Astron. Astrophy. 327, 1–7 (1997)ADSGoogle Scholar
  330. 330.
    Battaner, E., Florido, E., García-Ruiz, J.M.: Magnetic fields and large scale structure in a hot Universe. III. The polyhedric network. Astron. Astrophys. 327, 8–10 (1997)ADSGoogle Scholar
  331. 331.
    Battaner, E., Florido, E.: Magnetic fields and large scale structure in a hot Universe. IV. The egg-carton Universe. Astron. Astrophys. 338, 383–385 (1998)ADSGoogle Scholar
  332. 332.
    Nayeri, A., Engineer, S., Narlikar, J.V., Hoyle, F.: Structure formation in the quasi-steady state cosmology: a toy model. Astrophys. J. 525, 10–16 (1999)ADSCrossRefGoogle Scholar
  333. 333.
    Broadhurst, T.J., Ellis, R.S., Koo, D.C., Szalay, A.S.: Large-scale distribution of galaxies at the Galactic poles. Nature 343, 726–728 (1990)ADSCrossRefGoogle Scholar
  334. 334.
    Kurki-Suonio, H.: Galactic beads on a cosmic string. Sci. News 137, 287 (1990)Google Scholar
  335. 335.
    Kaiser, N., Peacock, J.A.: Power-spectrum analysis of one-dimensional redshift surveys. Astrophys. J. 379, 482–506 (1991)ADSCrossRefGoogle Scholar
  336. 336.
    Einasto, J., Einasto, M., Gottlöber, S., et al.: A 120-Mpc periodicity in the three-dimensional distribution of galaxy superclusters. Nature 385, 139–141 (1997)ADSCrossRefGoogle Scholar
  337. 337.
    Nabokov, N.V., Baryshev, Yu.V.: Method for analyzing the spatial distribution of galaxies on gigaparsec scales. II. Application to a grid of the HUDF-FDF-COSMOS-HDF surveys. Astrophysics 53(1), 101–111 (2010) (Trans. from Russian: Astrofizika, 53(1), 117–129 (2010))Google Scholar
  338. 338.
    Massey, R., Rhodes, J., Ellis, R., et al.: Dark matter maps reveal cosmic scaffolding. Nature 445, 286–290 (2007)ADSCrossRefGoogle Scholar
  339. 339.
    Haggerty, M.J., Wertz, J.R.: On the redshift-magnituderelation in hierarchical cosmologies. Mon. Not. R. Astron. Soc. 155, 495–503 (1972)ADSCrossRefGoogle Scholar
  340. 340.
    Fang, L.L., Mo, H.J., Ruffini, R.: The cellular structure of the universe and cosmological tests. Astron. Astrophys. 243, 283–294 (1991)ADSGoogle Scholar
  341. 341.
    Ribeiro, M.B.: On modeling a relativistic hierarchical (fractal) cosmology by Tolman’s spacetime. II—analysis of the Einstein-de Sitter model. Astrophys. J. 395, 29–33 (1992)ADSCrossRefGoogle Scholar
  342. 342.
    Ribeiro, M.B.: On modeling a relativistic hierarchical (fractal) cosmology by Tolman’s spacetime. I—theory. Astrophys. J. 388, 1–8 (1992)ADSCrossRefGoogle Scholar
  343. 343.
    Ribeiro, M.B.: On modeling a relativistic hierarchical (fractal) cosmology by Tolman’s spacetime. III. Numerical results. Astrophys. J 415, 469–485 (1993)ADSCrossRefGoogle Scholar
  344. 344.
    Best, J.S.: An examination of the large-scale clustering of the Las Campanas redshift survey. Astrophys. J. 541, 519–526 (2000)ADSCrossRefGoogle Scholar
  345. 345.
    de Lapparent, V., Geller, M.J., Huchra, J.P.: A slice of the universe. Astrophys. J. Lett. 302, L1–L5 (1986)ADSCrossRefGoogle Scholar
  346. 346.
    Dressler, A., Faber, S.M., Burstein, D., Davies, R.L., Lynden-Bell, D., Terlevich, R.J., Wegner, G.: Spectroscopy and photometry of elliptical galaxies—a large-scale streaming motion in the local universe. Astrophys. J. Lett. 313, L37–L42 (1987)ADSCrossRefGoogle Scholar
  347. 347.
    Sandage, A.: The redshift-distance relation. IX—perturbation of the very nearby velocity field by the mass of the Local Group. Astrophys. J. 307, 1–19 (1986)ADSCrossRefGoogle Scholar
  348. 348.
    Ekholm, T., Baryshev, Yu., Teerikorpi, P., Hanski, M.O., Paturel, G.: On the quiescence of the Hubble flow in the vicinity of the Local Group. A study using galaxies with distances from the Cepheid PL-relation. Astron. Astrophys. 368, L17–L20 (2001)ADSCrossRefGoogle Scholar
  349. 349.
    Karachentsev, I.D., Sharina, M.E., Makarov, D.I., et al.: The very local Hubble flow. Astron. Astrophys. 389, 812–824 (2002)ADSCrossRefGoogle Scholar
  350. 350.
    Matravers, D.R., Ellis, G.F.R., Stoeger, W.R.: Complementary approaches to cosmology—relating theory and observations. Q. J. R. Astron. Soc. 36, 29–45 (1995)ADSGoogle Scholar
  351. 351.
    Lauer, T.R., Postman, M.: The motion of the Local Group with respect to the 15,000 kilometer per second Abell cluster inertial frame. Astrophys. J. 425, 418–438 (1994)ADSCrossRefGoogle Scholar
  352. 352.
    Mathewson, D.S., Ford, V.L., Buchhorn, M.: No back-side infall into the great attractor. Astrophys. J. Lett. 389, L5–L8 (1992)ADSCrossRefGoogle Scholar
  353. 353.
    Lindley, D.: Not so Great Attractor? Nature 356, 657 (1992)ADSCrossRefGoogle Scholar
  354. 354.
    Finkbeiner, A.: Mapping the river in the sky. Science 257, 1208–1210 (1992)ADSGoogle Scholar
  355. 355.
    Hudson, M.J., Smith, R.J., Lucey, J.R., Schelegel, D.J., Davies, R.L.: A large-scale bulk flow of galaxy clusters. Astrophys. J. Lett. 512, L79–L82 (1999)ADSCrossRefGoogle Scholar
  356. 356.
    Lee, J., Komatsu, E.: Bullet cluster: a challenge to \(\Lambda \)CDM cosmology. Astrophys. J. 718, 60–65 (2010)ADSCrossRefGoogle Scholar
  357. 357.
    Thompson, R., Nagamine, K.: Pairwise velocities of dark matter haloes: a test for the cold dark matter model using the bullet cluster. Mon. Not. R. Astron. Soc. 419, 3560–3570 (2012)ADSCrossRefGoogle Scholar
  358. 358.
    Ayaita, Y., Weber, M., Wetterich, C.: Peculiar velocity anomaly from forces beyond gravity? arXiv:0908.2903 (2009)
  359. 359.
    Kashlinsky, A., Atrio-Barandela, F., Kocevski, D., Ebeling, H.: A measurement of large-scale peculiar velocities of clusters of galaxies: results and cosmological implications. Astrophys. J. Lett. 686, L49–L52 (2009)ADSCrossRefGoogle Scholar
  360. 360.
    Atrio-Barandela, F., Kashlinsky, A., Ebeling, H., Fixsen, D.J., Kocevski, D.: Probing the dark flow signal in WMAP 9-year and Planck cosmic microwave background maps. Astrophys. J. 810, 143 (2015)ADSCrossRefGoogle Scholar
  361. 361.
    Tikhonov, A.V., Gottlöber, S., Yepes, G., Hoffman, Y.: The sizes of minivoids in the local Universe: an argument in favour of a warm dark matter model? Mon. Not. R. Astron. Soc. 399, 1611–1621 (2009)ADSCrossRefGoogle Scholar
  362. 362.
    Peebles, P.J.E., Nusser, A.: Nearby galaxies as pointers to a better theory of cosmic evolution. Nature 465, 565–569 (2010)ADSCrossRefGoogle Scholar
  363. 363.
    Perivolaropoulos, L.: Six puzzles for LCDM cosmology. arXiv:0811.4684 (2008)
  364. 364.
    Anderson, L., Aubourg, E., Bailey, S., et al.: The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data releases 10 and 11 galaxy samples. Mon. Not. R. Astron. Soc. 441, 24–62 (2014)ADSCrossRefGoogle Scholar
  365. 365.
    Roukema, B.F., Buchert, T., Ostrowski, J.J., France, M.J.: Evidence for an environment-dependent shift in the baryon acoustic oscillation peak. Mon. Not. R. Astron. Soc. 448, 1660–1673 (2015)ADSCrossRefGoogle Scholar
  366. 366.
    Tifft, W.G.: Discrete states of redshift and galaxy dynamics. I—internal motions in single galaxies. Astrophys. J. 206, 38–56 (1976)ADSCrossRefGoogle Scholar
  367. 367.
    Tifft, W.G.: Discrete states of redshift and galaxy dynamics. II—systems of galaxies. Astrophys. J. 211, 31–46 (1977)ADSCrossRefGoogle Scholar
  368. 368.
    Tifft, W.G.: Periodicity in the redshift intervals for double galaxies. Astrophys. J. 236, 70–74 (1980)ADSCrossRefGoogle Scholar
  369. 369.
    Guthrie, B., Napier, W.M.: Redshift periodicity in the local supercluster. Astron. Astrophys. 310, 353–370 (1996)ADSGoogle Scholar
  370. 370.
    Napier, W.M.: Statistics of redshift periodicities. In: Pecker, J.-C., Narlikar, J. (eds.) Current Issues in Cosmology, pp. 207–216. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  371. 371.
    Burbidge, G.R., O’Dell, S.L.: The distribution of redshifts of quasi-stellar objects and related emission-line objects. Astrophys. J. 178, 583–606 (1972)ADSCrossRefGoogle Scholar
  372. 372.
    Bell, M.B.: Discrete intrinsic redshifts from quasars to normal galaxies. arXiv:astro-ph/0211091 (2002)
  373. 373.
    Bell, M.B., Comeau, S.P.: Further evidence for quantized intrinsic redshifts in galaxies: is the great attractor a myth? arXiv:astro-ph/0305112 (2003)
  374. 374.
    Bell, M.B., Comeau, S.P.: Intrinsic redshifts in QSOs near NGC 6212. arXiv:astro-ph/0306042 (2003)
  375. 375.
    Bell, M.B., McDiarmid, D.: Six peaks visible in the redshift distribution of 46,400 SDSS quasars agree with the preferred redshifts predicted by the decreasing intrinsic redshift model. Astrophys. J. 648, 140–147 (2006)ADSCrossRefGoogle Scholar
  376. 376.
    Hartnett, J.G., Hirano, K.: Galaxy redshift abundance periodicity from Fourier analysis of number counts N( z) using SDSS and 2dF GRS galaxy surveys. Astrophys. Space Sci. 328, 13–24 (2008)ADSCrossRefGoogle Scholar
  377. 377.
    Hartnett, J.G.: Unknown selection effect simulates redshift periodicity in quasar number counts from Sloan digital sky survey astrophys. Space Sci. 324, 13–16 (2009)ADSCrossRefGoogle Scholar
  378. 378.
    Fulton, C.C., Arp, H.C.: The 2dF redshift survey. I. Physical association and periodicity in quasar families. Astrophys. J. 754, 134 (2012)ADSCrossRefGoogle Scholar
  379. 379.
    Hawkins, E., Maddox, S., Merrifield, M.: No periodicities in 2dF redshift survey data mon. Not. R. Astron. Soc. 336, L13–L16 (2002)ADSCrossRefGoogle Scholar
  380. 380.
    Tang, S.M., Zhang, S.N.: Critical examinations of QSO redshift periodicities and associations with galaxies in sloan digital sky survey data. Astrophys. J. 633, 41–51 (2005)ADSCrossRefGoogle Scholar
  381. 381.
    Tang, S., Zhang, S.N.: Evidence against non-cosmological redshifts of QSOs in SDSS data. In: Basu, D. (ed.) Redshifts in Spectral Lines of Quasi Stellar Objects, pp. 125–136. Research Signpost, Kerala (2010)Google Scholar
  382. 382.
    Bajan, K., Flin, P., Godlowski, W., Pervushin, V.P.: On the investigations of galaxy redshift periodicity. Physics of Particles and Nuclei Letters 4(1), 5–10 (2007)ADSCrossRefGoogle Scholar
  383. 383.
    Repin, S.V., Komberg, B.V., Lukash, V.N.: Absence of a periodic component in the quasar Z distribution. Astron. Rep. 56(9), 702–709 (2012)ADSCrossRefGoogle Scholar
  384. 384.
    Hirano, K., Komiya, Z.: Observational tests for oscillating expansion rate of the Universe. Phys. Rev. D 82(10), 103513 (2010)ADSCrossRefGoogle Scholar
  385. 385.
    Lehto, A.: Periodic time and the stationary properties of matter. Chin. J. Phys. 28, 215–225 (1990)Google Scholar
  386. 386.
    Lehto, A.: On the Planck scale and properties of matter. Nonlinear Dyn. 55, 279–298 (2009)zbMATHCrossRefGoogle Scholar
  387. 387.
    Taubes, G.: Theorists Nix distant antimatter galaxies. Science 278, 226 (1997)CrossRefGoogle Scholar
  388. 388.
    Steinhardt, P.J.: La inflación a debate. Investigación y Ciencia. Junio 2011, 16–23 (2011)Google Scholar
  389. 389.
    Martin, J., Ringeval, C., Vennin, V.: Encyclopaedia inflationaris. Phys. Dark Univ. 5, 75–235 (2014)CrossRefGoogle Scholar
  390. 390.
    Zwicky, F.: Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6(10), 110–127 (1933)ADSzbMATHGoogle Scholar
  391. 391.
    Kahn, F.D., Woltjer, L.: Intergalactic matter and the galaxy. Astrophys. J. 130, 705–717 (1959)ADSCrossRefGoogle Scholar
  392. 392.
    Page, T.: Radial velocities and masses of double galaxies. Astrophys. J. 116, 63–84 (1952)ADSCrossRefGoogle Scholar
  393. 393.
    Page, T.: Average masses and mass-luminosity ratios of the double galaxies. Astrophys. J. 132, 910–912 (1960)ADSCrossRefGoogle Scholar
  394. 394.
    Holmberg, E.: On the masses of double galaxies. Medd. Lunds Astron. Observ. Ser. I(186), 1–20 (1954)ADSzbMATHGoogle Scholar
  395. 395.
    Babcock, H.W.: The rotation of the Andromeda Nebula. Lick Obs. Bull. 19(498), 41–51 (1939)ADSCrossRefGoogle Scholar
  396. 396.
    Ostriker, J.P., Peebles, J.P.E.: A numerical study of the stability of flattened galaxies: or, can cold galaxies survive? Astrophys. J. 186, 467–480 (1973)ADSCrossRefGoogle Scholar
  397. 397.
    Ostriker, J.P., Peebles, J.P.E., Yahil, A.: The size and mass of galaxies, and the mass of the universe. Astrophys. J. Lett. 193, L1–L4 (1974)ADSCrossRefGoogle Scholar
  398. 398.
    Rubin, V.: Rotational properties of 21 Sc galaxies with a large range of luminosities and radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophys. J. 238, 471–487 (1980)ADSCrossRefGoogle Scholar
  399. 399.
    Bell, F.B., McIntosh, D.H., Katz, N., Weinberg, M.D.: A first estimate of the Baryonic mass function of galaxies. Astrophys. J. Lett. 585, L117–L120 (2003)ADSCrossRefGoogle Scholar
  400. 400.
    Turner, M.S.: The case for \(\Omega _M= 0.33\pm 0.035\). Astrophys. J. 576, L101–L104 (2002)ADSCrossRefGoogle Scholar
  401. 401.
    White, S.D.M., Rees, M.J.: Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)ADSCrossRefGoogle Scholar
  402. 402.
    Battaner, E., Florido, E.: The rotation curve of spiral galaxies and its cosmological implications. Fund. Cosmic Phys. 21, 1–154 (2000)ADSGoogle Scholar
  403. 403.
    López-Corredoira, M., Beckman, J.E., Casuso, E.: High-velocity clouds as dark matter in the local group. Astron. Astrophys. 351, 920–924 (1999)ADSGoogle Scholar
  404. 404.
    López-Corredoira, M., Betancort-Rijo, J., Beckman, J.E.: Generation of galactic disc warps due to intergalactic accretion flows onto the disc. Astron. Astrophys. 386, 169–186 (2002)ADSCrossRefGoogle Scholar
  405. 405.
    McGaugh, S.S.: Boomerang data suggest a purely Baryonic universe. Astrophys. J. Lett. 541, L33–L36 (2000)ADSCrossRefGoogle Scholar
  406. 406.
    Evans, N.W.: No need for dark matter in galaxies? In: Spooner, N.J.C., Kudryavtsev, V. (eds.) Proceedings of the 3rd International Workshop on the Identification of Dark Matter, pp. 85–92. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  407. 407.
    Tasitsiomi, A.: The state of the cold dark matter models on galactic and subgalactic scales. Int. J. Mod. Phys. D 12(7), 1157–1196 (2003)ADSCrossRefGoogle Scholar
  408. 408.
    Sellwood, J.A.: Bar-Halo friction in galaxies. III. Halo density changes. Astrophys. J. 679, 379–396 (2008)ADSCrossRefGoogle Scholar
  409. 409.
    Gnedin, O.Y., Kravtsov, A.V., Klypin, A.A., Nagai, D.: Response of dark matter halos to condensation of Baryons: cosmological simulations and improved adiabatic contraction model. Astrophys. J. 616, 16–26 (2004)ADSCrossRefGoogle Scholar
  410. 410.
    Di Cintio, A., Brook, C.B., Macciò, A.V., Stinson, G.S., Knebe, A., Dutton, A.A., Wadsley, J.: The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014)ADSCrossRefGoogle Scholar
  411. 411.
    Binney, J., Gerhard, O., Silk, J.: The dark matter problem in disc galaxies. Mon. Not. R. Astron. Soc. 321, 471–474 (2001)ADSCrossRefGoogle Scholar
  412. 412.
    Casuso, E., Beckman, J.E.: On the origin of the angular momentum of galaxies: cosmological tidal torques and coriolis force. Mon. Not. R. Astron. Soc. 449, 2910–2918 (2015)ADSCrossRefGoogle Scholar
  413. 413.
    McGaugh, S.: The third law of galactic rotation. Galaxies 2, 601–622 (2014)ADSCrossRefGoogle Scholar
  414. 414.
    D’Onguia, E., Lake, G.: Cold dark matter’s small-scale crisis grows up. Astrophys. J. 612, 628–632 (2004)ADSCrossRefGoogle Scholar
  415. 415.
    Kroupa, P., Famaey, B., de Boer, K.S., et al.: Local-Group tests of dark-matter concordance cosmology. Towards a new paradigm for structure formation. Astron. Astrophys. 523, A32 (2010)CrossRefGoogle Scholar
  416. 416.
    Kroupa, P., Theis, C., Boily, C.M.: The great disk of Milky-Way satellites and cosmological sub-structures. Astron. Astrophys. 431, 517–521 (2005)ADSCrossRefGoogle Scholar
  417. 417.
    Pawlowski, M.S., Kroupa, P.: The rotationally stabilized VPOS and predicted proper motions of the Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 435, 2116–2131 (2013)ADSCrossRefGoogle Scholar
  418. 418.
    Kroupa, P.: The dark matter crisis: falsification of the current standard model of cosmology. Publ. Astron. Soc. Aust. 29, 395–433 (2012)ADSCrossRefGoogle Scholar
  419. 419.
    López-Corredoira, M., Kroupa, P.: The number of tidal dwarf satellite galaxies in dependence of Bulge Index. Astrophys. J. 817, 75 (2016)ADSCrossRefGoogle Scholar
  420. 420.
    Lasserre, T., Afonso, C., Albert, J.N., et al.: Not enough stellar mass Machos in the Galactic halo. Astron. Astrophys. 355, L39–L42 (2000)ADSGoogle Scholar
  421. 421.
    Moore, B.: Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629–631 (1994)ADSCrossRefGoogle Scholar
  422. 422.
    Moore, B.: An upper limit to the mass of black holes in the halo of the galaxy. Astrophys. J. Lett. 413, L93–L96 (1993)ADSCrossRefGoogle Scholar
  423. 423.
    Sadoulet, B.: Deciphering the nature of dark matter. Rev. Mod. Phys. 71, S197–S204 (1999)ADSCrossRefGoogle Scholar
  424. 424.
    Aharonian, F., Akhperjanian, A.G., Bazer-Bachi, A.R., et al.: The H.E.S.S. survey of the inner galaxy in very high energy gamma rays. Astrophys. J. 636, 777–797 (2006)ADSCrossRefGoogle Scholar
  425. 425.
    Sánchez-Conde, M.A.: Gamma-ray dark matter searches in the Milky Way. Paper presented at the Conference Distribution of Mass in the Milky Way, Leiden, Netherlands, 13–17, July (2009)Google Scholar
  426. 426.
    Toomre, A.: What amplifies the spirals. In: Fall, S.M., Lynden-Bell, D. (eds.) The Structure and Evolution of Normal Galaxies, pp. 111–136. Cambridge University Press, Cambridge (1981)Google Scholar
  427. 427.
    Sanders, R.H., McGaugh, S.S.: Modified Newtonian dynamics as an alternative to dark matter. Ann. Rev. Astron. Astrophys. 40, 263–317 (2002)ADSCrossRefGoogle Scholar
  428. 428.
    Drexler, J.: Identifying dark matter through the constraints imposed by fourteen astronomically based ‘cosmic constituents’. arXiv:astro-ph/0504512 (2005)
  429. 429.
    Mayer, F.J., Reitz, J.R.: Electromagnetic composites at the compton scale. Int. J. Theor. Phys. 51, 322–330 (2012)zbMATHCrossRefGoogle Scholar
  430. 430.
    Hajdukovic, D.S.: Virtual gravitational dipoles: the key for the understanding of the Universe? Phys. Dark Univ. 3, 34–40 (2014)CrossRefGoogle Scholar
  431. 431.
    Padmanabhan, T.: Cosmological constant-the weight of the vacuum. Phys. Rep. 380, 235–320 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  432. 432.
    Fukugita, M., Lahav, O.: Ly-alpha clouds at low redshift and the cosmological constant. Mon. Not. R. Astron. Soc. 253, 17P–20P (1991)ADSCrossRefGoogle Scholar
  433. 433.
    Longair, M.S.: Observational cosmology 1986. In: Hewitt, A., Burbidge, G., Fang, L.Z. (eds.) Observational Cosmology (IAU Symp. 124), pp. 823–840. Reidel, Dordrecht (1987)CrossRefGoogle Scholar
  434. 434.
    Efstathiou, G., Sutherland, W.J., Maddox, S.J.: The cosmological constant and cold dark matter. Nature 348, 705–707 (1990)ADSCrossRefGoogle Scholar
  435. 435.
    Aguirre, A., Haiman, Z.: Cosmological constant or intergalactic dust? Constraints from the cosmic far-infrared background. Astrophys. J. 532, 28–36 (2000)ADSCrossRefGoogle Scholar
  436. 436.
    Goobar, A., Bergström, L., Mörtsell, E.: Measuring the properties of extragalactic dust and implications for the Hubble diagram. Astron. Astrophys. 384, 1–10 (2002)ADSCrossRefGoogle Scholar
  437. 437.
    Milne, P.A., Foley, R.J., Brown, P.J., Narayan, G.: The changing fractions of type Ia supernova NUV–optical subclasses with redshift. Astrophys. J. 803, 20 (2015)ADSCrossRefGoogle Scholar
  438. 438.
    Knop, R.A., Aldering, G., Amanullah, R., et al.: New constraints on \(\Omega _M\), \(\Omega _\Lambda \), and \(w\) from an independent set of 11 high-redshift supernovae observed with the hubble space telescope. Astrophys. J. 598, 102–137 (2003)ADSCrossRefGoogle Scholar
  439. 439.
    Rowan-Robinson, M.: Do type Ia supernovae prove \(\Lambda >0\)? Mon. Not. R. Astron. Soc. 332, 352–360 (2002)ADSCrossRefGoogle Scholar
  440. 440.
    Shanks, T., Allen, P.D., Hoyle, F., Tanvir, N.R.: Cepheid, Tully-Fisher and SNIa distances. arXiv:astro-ph/0102450 (2001)
  441. 441.
    Domínguez, I., Höflich, P., Straniero, O., Wheeler, C.: Evolution of type Ia supernovae on cosmological time scales. Mem. Soc. Astron. Ital. 71, 449–460 (2000)ADSGoogle Scholar
  442. 442.
    Howell, D.A., Sullivan, M., Nugent, P.E., et al.: The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308–311 (2006)ADSCrossRefGoogle Scholar
  443. 443.
    Quimby, R., Höflich, P., Craig Wheeler, J.: SN 2005hj: evidence for two classes of normal-bright SNe Ia and implications for cosmology. Astrophys. J. 666, 1083–1092 (2007)ADSCrossRefGoogle Scholar
  444. 444.
    Podsiadlowski, P., Mazzali, P.A., Lesaffre, P., Wolf, C., Forster, F.: Cosmological implications of the second parameter of type Ia supernovae. arXiv:astro-ph/0608324 (2006)
  445. 445.
    Shu, W.-Y.: The geometry of the universe. arXiv:1007.1750 (2010)
  446. 446.
    Romano, A.E.: Lemaitre-Tolman-Bondi universes as alternatives to dark energy: Does positive averaged acceleration imply positive cosmic acceleration? Phys. Rev. D 75(4), 043509 (2007)ADSMathSciNetCrossRefGoogle Scholar
  447. 447.
    Vishwakarma, R.G., Narlikar, J.V.: Modeling repulsive gravity with creation. J. Astrophys. Astr. 28, 17–27 (2007)ADSCrossRefGoogle Scholar
  448. 448.
    Oliveira, F.J., Hartnett, J.G.: Carmeli’s cosmology fits data for an accelerating and decelerating universe without dark matter or dark energy. Found. Phys. Lett. 19(6), 519–535 (2006)zbMATHCrossRefGoogle Scholar
  449. 449.
    Thompson, R.I.: Constraints on quintessence and new physics from fundamental constants. Mon. Not. R. Astron. Soc. 422, L67–L71 (2012)ADSCrossRefGoogle Scholar
  450. 450.
    Jackson, J.C., Dodgson, M.: Deceleration without dark matter. Mon. Not. R. Astron. Soc. 285, 806–810 (1997)ADSCrossRefGoogle Scholar
  451. 451.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  452. 452.
    Unzicker, A.: Vom Urknall zum Durchknall. Die absurde Jagd nach der Weltformel. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  453. 453.
    Melia, F., Shevchuk, A.S.: The \(R_h=ct\) universe. Mon. Not. R. Astron. Soc. 419, 2579–2586 (2012)ADSCrossRefGoogle Scholar
  454. 454.
    Mitra, A.: Why Friedmann cosmology cannot describe the observed universe having pressure and radiation. J. Mod. Phys. 2, 1436–1442 (2011)CrossRefGoogle Scholar
  455. 455.
    Constantin, A., Shields, J.C., Hamann, F., Foltz, C.B., Chaffee, F.H.: Emission-line properties of \(z>4\) quasars. Astrophys. J. 565, 50–62 (2002)ADSCrossRefGoogle Scholar
  456. 456.
    Iwamuro, F., Motohara, K., Maihara, T., Kimura, M., Yoshii, Y., Doi, M.: Fe II/Mg II emission-line ratios of QSOs within \(0 < z < 5.3\). Astrophys. J. 565, 63–77 (2002)ADSCrossRefGoogle Scholar
  457. 457.
    Dietrich, M., Hamann, F., Appenzeller, I., Vertergaard, M.: Fe II/Mg II emission-line ratio in high-redshift quasars. Astrophys. J. 596, 817–829 (2003)ADSCrossRefGoogle Scholar
  458. 458.
    Freudling, W., Corbin, M.R., Korista, K.T.: Iron emission in \(z\sim 6\) QSOS. Astrophys. J. Lett. 587, L67–L70 (2003)ADSCrossRefGoogle Scholar
  459. 459.
    Maiolino, R., Juarez, Y., Mujica, R., Nagar, N., Oliva, E.: Early star formation traced by the highest redshift quasars. Astrophys. J. Lett. 596, L155–L158 (2003)ADSCrossRefGoogle Scholar
  460. 460.
    Barth, A.J., Martini, P., Nelson, C.H., Ho, L.C.: Iron emission in the \(z = 6.4\) Quasar SDSS J114816.64+525150.3. Astrophys. J. Lett. 594, L95–L98 (2003)ADSCrossRefGoogle Scholar
  461. 461.
    Sardane, G.M., Turnshek, D.A., Rao, S.M.: Ca II absorbers in the sloan digital sky survey: statistics. Mon. Not. R. Astron. Soc 444, 1747–1758 (2014)ADSCrossRefGoogle Scholar
  462. 462.
    Dunne, L., Eales, S., Ivison, R., Morgan, H., Edmunds, M.: Type II supernovae as a significant source of interstellar dust. Nature 424, 285–287 (2003)ADSCrossRefGoogle Scholar
  463. 463.
    Castro-Rodríguez, N., López-Corredoira, M.: The age of extremely red and massive galaxies at very high redshift. Astron. Astrophys. 537, A31 (2012)CrossRefGoogle Scholar
  464. 464.
    Longhetti, M., Saracco, P., Severgnini, P., et al.: Dating the stellar population in massive early-type galaxies at \(z 1.5\). Mon. Not. R. Astron. Soc. 361, 897–906 (2005)ADSCrossRefGoogle Scholar
  465. 465.
    Trujillo, I., Feulner, G., Goranova, Y., et al.: Extremely compact massive galaxies at \(z\sim 1.4\). Mon. Not. R. Astron. Soc. 373, L36–L40 (2006)ADSCrossRefGoogle Scholar
  466. 466.
    Labbé, I., Huang, J., Franx, M., et al.: IRAC mid-infrared imaging of the hubble deep field-south: star formation histories and stellar masses of red galaxies at \(z>2\). Astrophys. J. 624, L81–L84 (2005)ADSCrossRefGoogle Scholar
  467. 467.
    Toft, S., van Dokkum, P., Franx, M., Thompson, R.I., Illingworth, G.D., Bouwens, R.J., Kriek, M.: Distant red galaxies in the hubble ultra deep field. Astrophys. J. 624, L9–L12 (2005)ADSCrossRefGoogle Scholar
  468. 468.
    Rodighiero, G., Cimatti, A., Franceschini, A., Brusa, M., Fritz, J., Bolzonella, M.: Unveiling the oldest and most massive galaxies at very high redshift. Astron. Astrophys. 470, 21–37 (2007)ADSCrossRefGoogle Scholar
  469. 469.
    Wiklind, T., Dickinson, M., Ferguson, H.C., Giavalisco, M., Mobasher, B., Grogin, N.A., Panagia, N.: A population of massive and evolved galaxies at \(z>\sim 5\). Astrophys. J. 686, 781–806 (2008)ADSCrossRefGoogle Scholar
  470. 470.
    Steinhardt, C.L., Capak, P., Masters, D., Speagle, J.S.: The impossible early galaxy problem. Astrophys. J. 824, 21 (2016)ADSCrossRefGoogle Scholar
  471. 471.
    Guo, Q., White, S., Boylan-Kolchin, M., et al.: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a \(\Lambda \)CDM cosmology. Mon. Not. R. Astron. Soc. 413, 101–131 (2011)ADSCrossRefGoogle Scholar
  472. 472.
    Pérez-González, P.G., Rieke, G.H., Villar, V., et al.: The stellar mass assembly of galaxies from \(z = 0\) to \(z = 4\): analysis of a sample selected in the rest-frame near-infrared with spitzer. Astrophys. J. 675, 234–261 (2008)ADSCrossRefGoogle Scholar
  473. 473.
    Riechers, D.A., Bradford, C.M., Clements, D.L., et al.: A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Instituto de Astrofísica de CanariasLa LagunaSpain
  2. 2.Departamento de AstrofísicaUniversidad de La LagunaLa LagunaSpain

Personalised recommendations