Advertisement

Foundations of Physics

, Volume 47, Issue 3, pp 453–466 | Cite as

Particles, Cutoffs and Inequivalent Representations

Fraser and Wallace on Quantum Field Theory
  • Matthias Egg
  • Vincent Lam
  • Andrea OldofrediEmail author
Article

Abstract

We critically review the recent debate between Doreen Fraser and David Wallace on the interpretation of quantum field theory, with the aim of identifying where the core of the disagreement lies. We show that, despite appearances, their conflict does not concern the existence of particles or the occurrence of unitarily inequivalent representations. Instead, the dispute ultimately turns on the very definition of what a quantum field theory is. We further illustrate the fundamental differences between the two approaches by comparing them both to the Bohmian program in quantum field theory.

Keywords

Algebraic quantum field theory Particle physics Renormalization Unitarily inequivalent representations 

Notes

Acknowledgements

VL is grateful to the Swiss National Science Foundation for financial support (Project No. 169313).

References

  1. 1.
    Fraser, D.: Quantum field theory: underdetermination, inconsistency, and idealization. Philos. Sci. 76, 536 (2009)CrossRefGoogle Scholar
  2. 2.
    Fraser, D.: How to take particle physics seriously: a further defence of axiomatic quantum field theory. Stud. Hist. Philos. Modern Phys. 42, 126 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wallace, D.: In defence of Naiveté: the conceptual status of Lagrangian quantum field theory. Synthese 151, 33 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wallace, D.: Taking particle physics seriously: a critique of the algebraic approach to quantum field theory. Stud. Hist. Philos. Modern Phys. 42, 116 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fraser, D.: The fate of ‘particles’ in quantum field theories with interactions. Stud. Hist. Philos. Modern Phys. 39, 841 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wallace, D., Timpson, C.G.: Quantum mechanics on spacetime I: spacetime state realism. Br. J. Philos. Sci. 61, 697 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baker, D.J.: Against field interpretations of quantum field theory. Br. J. Philos. Sci. 60, 585 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kuhlmann, M.: Why conceptual rigour matters to philosophy: on the ontological significance of algebraic quantum field theory. Found. Phys. 40, 1625 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Egg, M.: Causal warrant for realism about particle physics. J. Gen. Philos. Sci. 43, 259 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Egg, M.: Scientific realism in particle physics: a causal approach. De Gruyter, Boston (2014)CrossRefGoogle Scholar
  11. 11.
    MacKinnon, E.: The standard model as a philosophical challenge. Philos. Sci. 75, 447 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Schweber, S.: QED and the Men Who Made It. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  13. 13.
    Cao, T.: Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Struyve, W.: Pilot-wave approaches to quantum field theory. J. Phys. 306, 012047 (2011)Google Scholar
  15. 15.
    Lam, V.: Primitive ontology and quantum field theory. Eur. J. Philos. Sci. 5, 387 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Allori, V.: Primitive ontology in a nutshell. Int. J. Quantum Found. 1, 107 (2015)Google Scholar
  17. 17.
    Barrett, J.A.: Entanglement and disentanglement in relativistic quantum mechanics. Stud. Hist. Philos. Modern Phys. 48, 168 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics without Quantum Philosophy. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    Bell, J.S.: Beables for quantum field theory. Phys. Rep. 137, 49 (1986)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Colin, S., Struyve, W.: A Dirac sea pilot-wave model for quantum field theory. J. Phys. A 40(26), 7309 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Bell-type quantum field theories. J. Phys. A 38(4), R1 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dürr, D., Goldstein, S., Norsen, T., Struyve, W., Zanghi, N.: Can Bohmian mechanics be made relativistic? Proc. R. Soc. A 470 (2013)Google Scholar
  23. 23.
    Seevinck, M.P.: Can quantum theory and special relativity peacefully coexist? (2010). Preprint, submitted Oct 18, 2010. arXiv:1010.3714v1 [quant-ph]
  24. 24.
    Goldstein, S., Norsen, T., Tausk, D.V., Zanghì, N.: Bell’s theorem. Scholarpedia 6(10), 8378 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Maudlin, T.: Quantum Non-Locality and Relativity, 3rd edn. Wiley-Blackwell, Chichester (2011)CrossRefGoogle Scholar
  26. 26.
    Daumer, M., Dürr, D., Goldstein, S., Zanghì, N.: Naive realism about operators. Erkenntnis 45, 379 (1997)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of PhilosophyUniversity of BernBern 9Switzerland
  2. 2.Department of PhilosophyUniversity of GenevaGenève 4Switzerland
  3. 3.School of Historical and Philosophical InquiryThe University of QueenslandSt LuciaAustralia
  4. 4.Department of PhilosophyUniversity of LausanneLausanneSwitzerland

Personalised recommendations