Foundations of Physics

, Volume 47, Issue 2, pp 294–315 | Cite as

On Noncontextual, Non-Kolmogorovian Hidden Variable Theories

  • Benjamin H. FeintzeigEmail author
  • Samuel C. Fletcher


One implication of Bell’s theorem is that there cannot in general be hidden variable models for quantum mechanics that both are noncontextual and retain the structure of a classical probability space. Thus, some hidden variable programs aim to retain noncontextuality at the cost of using a generalization of the Kolmogorov probability axioms. We generalize a theorem of Feintzeig (Br J Philos Sci 66(4): 905–927, 2015) to show that such programs are committed to the existence of a finite null cover for some quantum mechanical experiments, i.e., a finite collection of probability zero events whose disjunction exhausts the space of experimental possibilities.


Quantum mechanics Hidden variables Non-Kolmogorovian probability 



SCF would like to thank audiences at Budapest, Tübingen, and Saig, Germany, especially Guido Bacciagalupi and Fay Dowker, for their comments. BHF would like to thank audiences at the Perimeter Institute and Chapman University. Both authors acknowledge the support of National Science Foundation Graduate Research Fellowships. In addition, the authors would like to thank an anonymous referee for helpful comments.


  1. 1.
    Agarwal, G., Home, D., Schleich, W.: Einstein-Podolsky-Rosen correlation-parallelism between the Wigner function and the local hidden variable approaches. Phys. Lett. A 170, 359–362 (1992)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aspect, A.: Trois tests expérimentaux des inégalités de Bell par corrélation de polarisation de photons. PhD thesis, Universite de Paris-Sud, Cenre d’Orsay, Orsay (1983)Google Scholar
  3. 3.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    Bassi, A., Ghirardi, G.: Can the decoherent histories description of reality be considered satisfactory? Phys. Lett. A 257, 247–263 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Bassi, A., Ghirardi, G.: Decoherent histories and realism. J. Stat. Phys. 98, 457–494 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bell, J.: On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964)Google Scholar
  8. 8.
    Bell, J.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447–451 (1966)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bell, J.: Introduction to the hidden-variable question. In: d’Espagnat, B. (ed.) Foundations of Quantum Mechanics (Proceedings of the International School of Physics ’Enrico Fermi’. course IL), pp. 171–181. Academic Press, New York (1971)Google Scholar
  10. 10.
    Bradley, S.: Imprecise probabilities. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2015)Google Scholar
  11. 11.
    Clauser, J., Horne, M.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    Clauser, J., Horne, M., Shimony, A., Holt, R.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    Cox, R.: Probability, frequency and reasonable expectation. Am. J. Phys. 14, 1–10 (1946)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Craig, D., Dowker, F., Henson, J., Major, S., Rideout, D., Sorkin, R.: A Bell inequality analog in quantum measure theory. J. Phys. A 40, 501–523 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    de Barros, J.A., Suppes, P.: Some conceptual issues involving probability in quantum mechanics (2000). arXiv:quant-ph/0001017
  16. 16.
    de Barros, J.A., Suppes, P.: Probabilistic inequalities and upper probabilities in quantum mechanical entanglement. Manuscrito — Revista Internacional de Filosofia 33(1), 55–71 (2010)Google Scholar
  17. 17.
    Dirac, P.: Bakerian lecture: the physical interpretation of quantum mechanics. Proc. R. Soc. Lond. A 180, 1–40 (1942)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Dowker, F., Ghazi-Tabatabai, Y.: The Kochen-Specker theorem revisited in quantum measure theory. J. Phys. A 41, 105301 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Feintzeig, B.: Hidden variables and incompatible observables in quantum mechanics. Br. J. Philos. Sci. 66(4), 905–927 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Feynman, R.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367–387 (1948)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Feynman, R.: Negative probability. In: Hiley, B., Peat, F.D. (eds.) Quantum Implications: Essays in Honour of David Bohm, pp. 235–248. Routledge, New York (1987)Google Scholar
  23. 23.
    Fine, A.: Antinomies of entanglement: the puzzling case of the tangled statistics. J. Philos. 79(12), 733–747 (1982)MathSciNetGoogle Scholar
  24. 24.
    Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48(5), 291–294 (1982)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Fine, A.: Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 23(7), 1306–1310 (1982)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Gell-Mann, M., Hartle, J.: Decoherent histories quantum mechanics with one real fine-grained history. Phys. Rev. A 85, 062120 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Giustina, M., Mech, A., Ramelow, S., Wittman, B., Kofler, J., Beyer, J., Lita, A., Calkins, B., Gerrits, T., Nam, S., Ursin, R., Zeilinger, A.: Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Giustina, M., Versteegh, M., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M., Beyer, J., Gerrits, T., Lita, A., Shalm, L., Nam, S., Scheidl, T., Ursin, R., Wittmann, B., Zeilinger, A.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Greenberger, D., Horne, M., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Greenberger, D., Horne, M., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem. Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)Google Scholar
  31. 31.
    Griffiths, R.: Consistent histories, quantum truth functionals, and hidden variables. Phys. Lett. A 265, 12–19 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Griffiths, R.: Consistent quantum realism: A reply to Bassi and Ghirardi. J. Stat. Phys. 99, 1409–1425 (2000)CrossRefzbMATHGoogle Scholar
  33. 33.
    Gudder, S.: Quantum Probability. Academic Press, San Diego, CA (1988)zbMATHGoogle Scholar
  34. 34.
    Gudder, S.: Finite quantum measure spaces. Am. Math. Mon. 117(6), 512–527 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Gudder, S.: Quantum measure theory. Math. Slovaca 60(5), 681–700 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Halliwell, J., Yearsley, J.: Negative probabilities, Fine’s theorem, and linear positivity. Phys. Rev. A 87, 022114 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Han, Y.D., Hwang, W., Koh, I.: Explicit solutions for negative probability measures for all entangled states. Phys. Lett. A 221, 283–286 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hartle, J.: Linear positivity and virtual probability. Phys. Rev. A 70, 022104 (2004)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Hartle, J.: Quantum mechanics with extended probabilities. Phys. Rev. A 78, 012108 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Hartmann, S., Suppes, P.: Entanglement, upper probabilities and decoherence in quantum mechanics. In: Suárez, M., Dorato, M., Rédei, M. (eds.) EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association, pp. 93–103. Springer, Berlin (2010)CrossRefGoogle Scholar
  41. 41.
    Home, D., Lepore, V., Selleri, F.: Local realistic models and non-physical probabilities. Phys. Lett. A 158, 357–360 (1991)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Home, D., Selleri, F.: Bell’s theorem and the EPR paradox. Revista del Nuovo Cimento 14(9), 1–95 (1991)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Ivanović, I.: On complex Bell’s inequality. Lettere al Nuovo Cimento 22(1), 14–16 (1978)CrossRefGoogle Scholar
  44. 44.
    Khrennikov, A.: p-adic probability distributions of hidden variables. Physica A 215(4), 577–587 (1995)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Khrennikov, A.: p-Adic probability interpretation of Bell’s inequality. Phys. Lett. A 200, 219–223 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Khrennikov, A.: Interpretations of Probability, 2nd edn. de Gruyter, Berlin (2009)CrossRefzbMATHGoogle Scholar
  47. 47.
    Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Krantz, D., Luce, D., Suppes, P., Tversky, A.: Foundations of Measurement, vol. I. Dover, Mineola, NY (1971)zbMATHGoogle Scholar
  49. 49.
    Kronz, F.: A nonmonotonic theory of probability for spin-1/2 systems. Int. J. Theor. Phys. 44(11), 1963–1976 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Kronz, F.: Non-monotonic probability theory and photon polarization. J. Philos. Logic 36, 446–472 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Kronz, F.: Non-monotonic probability theory for n-state quantum systems. Stud. Hist. Philos. Mod. Phys. 39, 259–272 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Kronz, F.: Actual and virtual events in the quantum domain. Ontol. Stud. 9, 209–220 (2009)Google Scholar
  53. 53.
    Malament, D.: Notes on Bell’s theorem (2012).
  54. 54.
    Mermin, N.: Generalizations of Bell’s theorem to higher spins and higher correlations. In: Roth, L., Inomato, A. (eds.) Fundamental Questions in Quantum Mechanics, pp. 7–20. Gordon and Breach, New York (1986)Google Scholar
  55. 55.
    Mermin, N.: Quantum mysteries revisited. Am. J. Phys. 58, 731–733 (1990)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Miller, D.: Realism and time symmetry in quantum mechanics. Phys. Lett. A 222, 31–36 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Mückenheim, W.: A resolution of the Einstein-Podolsky-Rosen paradox. Lettere al Nuovo Cimento 35(9), 300–304 (1982)CrossRefGoogle Scholar
  58. 58.
    Mückenheim, W.: A review of extended probabilities. Phys. Rep. 133(6), 337–401 (1986)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Pitowsky, I.: Deterministic model of spin and statistics. Phys. Rev. D 27(10), 2316–2326 (1983)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Pitowsky, I.: Quantum Probability-Quantum Logic. Springer, New York (1989)zbMATHGoogle Scholar
  61. 61.
    Polubarinov, I.: Continuous Representation for Spin 1/2, Quantum Probability and Bell Paradox, p. E2-88-80. Communication of the Joint Institute for Nuclear Research, Dubna (1988)Google Scholar
  62. 62.
    Pusey, M., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8, 475–478 (2012)CrossRefGoogle Scholar
  63. 63.
    Rothman, T., Sudarshan, E.: Hidden variables or positive probabilities? Int. J. Theor. Phys. 40(8), 1525–1543 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Scully, M., Walther, H., Schleich, W.: Feynman’s approach to negative probability in quantum mechanics. Phys. Rev. A 49(3), 1562–1566 (1994)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    Sorkin, R.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9(33), 3119–3127 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Sorkin, R.: Quantum measure theory and its interpretation. In: Feng, D., Hu, B. (eds.) Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, pp. 229–251, International Press, Cambridge, MA (1997)Google Scholar
  67. 67.
    Srinivasan, S.: Complex measureable processes and path integrals. In: Sridhar, R., Srinivasa Rao, K., Lakshminarayanan, V. (eds.) Selected Topics in Mathematical Physics: Professor R. Vasudevan Memorial Volume, pp. 13–27. Allied Publishers, New Delhi (1995)Google Scholar
  68. 68.
    Srinivasan, S.: Complex measure, coherent state and squeezed state representation. J. Phys. A 31, 4541–4553 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Srinivasan, S.: Quantum phenomena via complex measure: holomorphic extension. Fortschritte der Physik 54(7), 580–601 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Srinivasan, S., Sudarshan, E.: Complex measures and amplitudes, generalized stochastic processes and their application to quantum mechanics. J. Phys. A 27, 517–534 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Sudarshan, E., Rothman, T.: A new interpretation of Bell’s inequalities. Int. J. Theor. Phys. 32(7), 1077–1086 (1993)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Suppes, P.: Logics appropriate to empirical theories. In Symposium on the Theory of Models. North Holland, Amsterdam (1965)Google Scholar
  73. 73.
    Suppes, P.: The probablistic argument for a nonclassical logic of quantum mechanics. Philos. Sci. 33, 14–21 (1966)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Suppes, P., Zanotti, M.: Existence of hidden variables having only upper probabilities. Found. Phys. 21(2), 1479–1499 (1991)ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    Surya, S., Wallden, P.: Quantum covers in quantum measure theory. Found. Phys. 40, 585–606 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Van Wesep, R.: Hidden variables in quantum mechanics: generic models, set-theoretic forcing, and the appearance of probability. Ann. Phys. 321, 2453–2475 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Van Wesep, R.: Hidden variables in quantum mechanics: noncontextual generic models. Ann. Phys. 321, 2476–2490 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Wódkiewicz, K.: On the equivalence of nonlocality and nonpositivity of quasi-distributions in EPR correlations. Phys. Lett. A 121(1), 1–3 (1988)CrossRefGoogle Scholar
  79. 79.
    Youssef, S.: A reformulation of quantum mechanics. Mod. Phys. Lett. A 6(3), 225–235 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Youssef, S.: Quantum mechanics as Bayesian complex probability theory. Mod. Phys. Lett. A 9(28), 2571–2586 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Youssef, S.: Is complex probability theory consistent with Bell’s theorem? Phys. Lett. A 204, 181–187 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Youssef, S.: Quantum mechanics as an exotic probability theory. In: Hanson, K., Silver, R. (eds.) Maximum Entropy and Bayesian Methods, pp. 237–244. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of WashingtonSeattleUSA
  2. 2.Department of PhilosophyUniversity of MinnesotaMinneapolisUSA
  3. 3.Munich Center for Mathematical PhilosophyLudwig Maximilian UniversityMunichGermany

Personalised recommendations