Foundations of Physics

, Volume 47, Issue 6, pp 851–869 | Cite as

The Diffuse Light of the Universe

On the Microwave Background Before and After Its Discovery: Open Questions
  • Jean-Marc Bonnet-Bidaud


In 1965, the discovery of a new type of uniform radiation, located between radiowaves and infrared light, was accidental. Known today as Cosmic Microwave background (CMB), this diffuse radiation is commonly interpreted as a fossil light released in an early hot and dense universe and constitutes today the main ’pilar’ of the big bang cosmology. Considerable efforts have been devoted to derive fundamental cosmological parameters from the characteristics of this radiation that led to a surprising universe that is shaped by at least three major unknown components: inflation, dark matter and dark energy. This is an important weakness of the present consensus cosmological model that justifies raising several questions on the CMB interpretation. Can we consider its cosmological nature as undisputable? Do other possible interpretations exist in the context of other cosmological theories or simply as a result of other physical mechanisms that could account for it? In an effort to questioning the validity of scientific hypotheses and the under-determination of theories compared to observations, we examine here the difficulties that still exist on the interpretation of this diffuse radiation and explore other proposed tracks to explain its origin. We discuss previous historical concepts of diffuse radiation before and after the CMB discovery and underline the limit of our present understanding.


Cosmology Cosmic microwave background Big bang Steady state MOND 


  1. 1.
    Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. PNAS 15(3), 168–173 (1929)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Einstein, A.: Kosmologische Betrachtungen zur allegemeinen Relativitätstheorie. Sitzungsherichte Berl. Akad. 1, 142 (1917)zbMATHGoogle Scholar
  3. 3.
    Friedman, A.: On the curvature of space. Zeitschrift für Physik 10, 377–386 (1922)ADSCrossRefGoogle Scholar
  4. 4.
    Penzias, A., Wilson, R.: A measurement of excess antenna temperature at 4080 megacycles/s. Astrophys. J. 142, 419–421 (1965)ADSCrossRefGoogle Scholar
  5. 5.
    Turner, M.: A sober assessment of cosmology at the new millennium. PASP 113, 653–657 (2001). Millennium EssayADSCrossRefGoogle Scholar
  6. 6.
    Dicke, R., Peebles, P., Roll, P., Wilkinson, D.: Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965)ADSCrossRefGoogle Scholar
  7. 7.
    Alpher, R., Herman, R.: Evolution of the universe. Nature 162, 774–775 (1948)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Alpher, R., Herman, R.: Neutron-capture theory of element formation in an expanding universe. Phys. Rev. 84, 60–68 (1951)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Mather, J., et al.: A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite. ApJ 354, L37 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Sunyaev, R., Zeldovich, Y.: Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19 (1970)ADSGoogle Scholar
  11. 11.
    Peebles, P., Yu, J.: Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815–836 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    Smoot, G., et al.: Structure in the COBE differential microwave radiometer first-year maps. ApJ 396, L1 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    Komatsu, E., et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations : cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18–69 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Bennett, C.: Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: final maps and results. ApJS 208(2), 20 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Planck collaboration.: Planck 2013 results. XVI. Cosmological parameters. A&A 571, A16 (2014)Google Scholar
  16. 16.
    Planck collaboration.: “Planck 2015 results. XIII. Cosmological parameters”. A&A 594, A13 (2016) arXiv:1502.01589
  17. 17.
    Ade, P., et al.: BICEP2 I: detection of B-mode polarization at degree angular scales. Phys. Rev. Lett. 112, 241101 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Ade, P., et al.: Joint analysis of BICEP2/Keck Array and Planck data. Phys. Rev. Lett. 114, 101301 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Riess, A.: A 3% solution : determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys. J. 730, 119–135 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Planck collaboration (2015) “Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts. arXiv:1502.01597
  21. 21.
    Hu, W., et al.: The physics of microwave background anisotropies. Nature 386, 37–43 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Address to the British Association for the Advancement of Science (1900) according to “ Superstring: A theory of everything?” (1988) by Paul Davies and Julian Brown. Note however, that this quotation may be misattributed to William Thompson (see,_1st_Baron_Kelvin)
  23. 23.
    Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    Bekenstein, J.: Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Skordis, C.: The tensor-vector-scalar theory and its cosmology. Class. Quant. Gravity 26, 1403001–1403044 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ferreira, P., Starkman, G.: Einstein’s theory of gravity and the problem of missing mass. Science 326, 812–815 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Famaey, B., Mc Gaugh, S.: Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Living Rev. Relativ, 15(10). arXiv:1112.3960 (2012)
  28. 28.
    Angus, G.: Is an 11 eV sterile neutrino consistent with clusters, the cosmic microwave background and modified Newtonian dynamics? Mon. Not. R. Astron. Soc. 394, 527–532 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Zeldovich, Y., Sunyaev, R.: The interaction of matter and radiation in a hot-model Universe. Astrophys. Space Sci. 4, 301–316 (1969)ADSCrossRefGoogle Scholar
  30. 30.
    Guillaume, C.E.: La température de l’espace. La Nat. 24(2), 210–234 (1896)Google Scholar
  31. 31.
    Eddington, A.: The internal constitution of the stars, Chapter 13, 1st edn. Cambridge University Press, Cambridge (1988). (Reprint of 1926 edition)CrossRefGoogle Scholar
  32. 32.
    Regener, E.: The energy flux of cosmic rays. Zeitschrift für Physik 80, 666–669 (1933). (English translation in Apeiron, 1995, vol. 2, pp. 85–86)ADSCrossRefGoogle Scholar
  33. 33.
    Bondi, H., Gold, T.: The steady-state theory of the expanding universe. Mon. Not. RAS 108, 252–270 (1948)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Hoyle, F.: A new model for the expanding universe. Mon. Not. RAS 108, 372–382 (1948)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Hoyle, F., Burbidge, G., Narlikar, J.: A quasi-steady state cosmological model with creation of matter. Astrophys. J. 410, 437–457 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    Burbidge, G., Burbidge, M., Fowler, W., Hoyle, F.: Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957)ADSCrossRefGoogle Scholar
  37. 37.
    Hoyle, F., Tayler, R.J.: The mystery of the cosmic helium abundance. Nature 209, 1108–1110 (1964)ADSCrossRefGoogle Scholar
  38. 38.
    Hoyle, F., Burbidge, G., Narlikar, J.: Astrophysical deductions from the quasi-steady state cosmology. Mon. Not. RAS 267, 1007–1019 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    Hoyle, F., Wicramasinghe, N.: Metallic particles in astronomy. Astrophys. Space Sci. 147, 245–256 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    Narlikar, J., Burbidge, G., Vishwakarma, R.: Cosmology and cosmogony in a cyclic universe. J. Astrophys. Astron. 28, 67–99 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Hoyle F.: Fred Hoyle, the rebel (Fred Hoyle, l’irréductible), Ciel & Espace 284, pp. 32–37 (interview by Jean-Marc Bonnet-Bidaud). (1993)
  42. 42.
    Alfven, H.: On hierarchical cosmology. Astrophys. Space Sci. 89, 313–324 (1983)ADSCrossRefGoogle Scholar
  43. 43.
    Alfven, H.: Cosmology in the plasma universe: an introductory exposition. IEEE Trans. Plasma Sci. 18, 10 (1990)ADSCrossRefGoogle Scholar
  44. 44.
  45. 45.
    Lerner, E.: Intergalactic radio absorption and the COBE data. Astrophys. Space Sci. 227, 61–81 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    Alfonso-Faus, A., Fullana, M.: Sources of microwave radiation and dark matter identified: millimeter black-holes. (2010)
  47. 47.
    Assis, A.: On Hubble’s law of redshift, Olbers’ paradox and the cosmic background radiation. Apeiron 12, 10–16 (1992)Google Scholar
  48. 48.
    Fahr, H., Zönnchen, J.: The writing on the cosmic wall: Is there a straightforward explanation of the cosmic microwave background? Ann. Phys. 18(10–11), 699–721 (2009). (Berlin)CrossRefzbMATHGoogle Scholar
  49. 49.
    Crawford, D.: Curvature cosmology: a model for a static, stable universe, p. 168. Brown Walker Press, Florida (2006)Google Scholar
  50. 50.
    Land, K., Magueijo, J.: The axis of evil. Phys. Rev. Lett. 95, 071301 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Land, K., Magueijo, J.: The axis of evil revisited. Mon. Not. RAS 378, 153–158 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Planck collaboration.: Planck 2015 results. XVI. Isotropy and statistics of the CMB. A&A 594, A16 (2016).
  53. 53.
    Fahr, H.-J., Sokaliwska, M.: Remaining problems in interpretation of the cosmic microwave background. Phys. Res. Int. 2015, 1–15 (2015). doi: 10.1155/2015/503106. Article ID 503106CrossRefGoogle Scholar
  54. 54.
    Li, T.P., et al.: Observation number correlation in WMAP data. Mont. Not. RAS 398, 47–52 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Liu H. et al.: Diagnosing timing error in WMAP data, Month. Not. RAS. Online 31 March, L236. (2011)
  56. 56.
    Roukema, B.: On the suspected timing-offset-induced calibration error in the Wilkinson microwave anisotropy probe time-ordered data. Astron. Astrophys. 518, A34–41 (2011)CrossRefGoogle Scholar
  57. 57.
    McKellar, A.: Molecular lines from the lowest states of diatomic molecules composed of atoms probably present in interstellar space. Publ. Dom. Astrophys. BC 7, 251–272 (1941)ADSGoogle Scholar
  58. 58.
    Slyk, K., et al.: CN column densities and excitation temperatures. Mon. Not. RAS 390, 1733–1750 (2008)ADSGoogle Scholar
  59. 59.
    Srianand, H., Petitjean, P., Ledoux, C.: The cosmic microwave background radiation temperature at a redshift of 2.34. Nature 408, 931–935 (2000)ADSCrossRefGoogle Scholar
  60. 60.
    Noterdaeme, P., et al.: The evolution of the cosmic microwave background temperature-measurements of TCMB at high redshift from carbon monoxide excitation. Astron. Astrophys. 526, L7–14 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    Fahr, H., Loch, R.: Photon stigmata from the recombination phase superimposed on the cosmological background radiation. Astron. Astrophys. 246, 1–9 (1991)ADSGoogle Scholar
  62. 62.
    Harker, G., et al.: Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case. Mont. Not. RAS 405, 2492–2504 (2010)ADSGoogle Scholar
  63. 63.
    Carilli C.: SKA Key science project: radio observations of cosmic reionization and first light. In: Beswick (ed) Proceedings of science, from planets to dark ages: the modern radio universe. (2010)
  64. 64.
    Dolgov, A.: Neutrinos in cosmology. Phys. Rep. 370, 333–535 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Astrophysics DepartmentFrench Alternative Energies and Atomic Energy Commission (CEA)Gif-sur-YvetteFrance

Personalised recommendations