Abstract
I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein’s historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space–time has a discrete spectrum, relative to classical observers in space–time. This description is covariant with respect to (continuous) coordinate transformations and meets the requirement that the spectrum is the same in every inertial system. The construction gives detailed answers to controversial questions, such as the measurement problem, the informational content of the wave function, and the completeness of quantum mechanics.
This is a preview of subscription content, access via your institution.
References
Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik 33, 879 (1925)
Born, M., Jordan, P.: Zur Quantenmechanik. Zeitschrift für Physik 34, 858 (1925)
Born, M., Heisenberg, W., Jordan, P.: Zur Quantenmechanik II. Zeitschrift für Physik 35, 8 (1926)
Schrödinger, E.: Quantisierung als Eigenwertproblem. Annalen der Physik 79, 361, 489, 734 (1926), and 81, 109 (1926)
Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1930)
von Neumann, J.: Mathematische Grundlagen der Quanten Mechanik. Springer, Berlin (1932)
Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637 (1996)
Einstein, A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik 17, 891 (1905)
Michelson, A.A., Morley, E.W.: On the relative motion of the earth and the luminiferous ether. Am. J. Sci. 34, 333 (1887)
Poincaré, H.: L’état actuel et l’avenir de la physique mathématique. Bulletin des Sciences Mathématiques 28, 302 (1904)
Gerlach, W., Stern, O.: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift für Physik 9, 349 (1922)
Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885 (1957)
Born, M.: Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 37, 863 (1926)
Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Harper & Row, New York (1962)
2014 CODATA recommended values
O’Hara, P.: Bell’s Inequality, the Pauli Exclusion Principle and Baryonic Structure. In: Spin 96 Proceedings, World Scientific, Singapore (1997) arXiv:hep-th/9701089
Lecture notes, ocw.mit.edu/courses
Smilga W.: Momentum entanglement in relativistic quantum mechnanics J. Phys.: Conf. Ser. 597, 012069 (2015) iopscience.iop.org/1742-6596/597/1/012069
Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W. (ed.) Complexity, Entropy, and the Physics of Information. Addison-Wesley, Reading, MA (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Smilga, W. Towards a Constructive Foundation of Quantum Mechanics. Found Phys 47, 149–159 (2017). https://doi.org/10.1007/s10701-016-0050-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10701-016-0050-7
Keywords
- Quantum foundations
- Wave function
- Interaction
- Self-organisation