Abstract
A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. The possibility to provide an unifying explanation of dark matter and dark energy as phenomena linked with the fluctuations of the three-dimensional quantum vacuum is explored. The changes and fluctuations of the quantum vacuum energy density generate a curvature of space–time similar to the curvature produced by a “dark energy” density. The formation of large scale structures in the universe associated to the flattening of the orbital speeds of the spiral galaxies can be explained in terms of primary fluctuations of the quantum vacuum energy density without attracting the idea of dark matter.
This is a preview of subscription content, access via your institution.
Notes
An analogous limitation holds in time.
References
Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Doklady Akad. Nauk S.S.S.R 177(1), 70–71 (1967)
Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1971)
Rueda, A., Haisch, B.: Gravity and the quantum vacuum inertia hypothesis. Ann. Phys. 14(8), 479–498 (2005); e-print arXiv:gr-qc/0504061v3 (2005)
Puthoff, H.E.: Polarizable-vacuum (PV) approach to general relativity. Found. Phys. 32(6), 927–943 (2002)
Consoli, M.: Do potentials require massless particles? Phys. Rev. Lett. B 672(3), 270–274 (2009)
Consoli, M.: On the low-energy spectrum of spontaneously broken phi4 theories. Mod. Phys. Lett. A 26, 531–542 (2011); e-print arXiv:0904.1272 [gr-qc]
Consoli, M.: The vacuum condensates: a bridge between particle physics to gravity? In: Licata, I., Sakaji, A. (eds.) Vision of Oneness. Aracne Editrice, Roma (2011)
Milonni, P.W.: The Quantum Vacuum—An Introduction to Quantum Electrodynamics. Academic Press, New York (1994)
Daywitt, W.C.: The source of the quantum vacuum. Prog. Phys. 1, 27–32 (2009)
Rovelli, C.: Loop quantum gravity. Phys. World 7(11), 1–5 (2003)
Rovelli, C.: Loop quantum gravity. http://relativity.livingreviews.org/Articles/lrr-2008-5/ (2008)
Rovelli, C.: A new look at loop quantum gravity. Class. Quantum Gravity 28(11), 114005 (2011); e-print arXiv:1004.1780v1 [gr-qc]
Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nuclear Phys. B 442, 593–619 (1995)
Lewandowski, J.: Volume and quantizations. Class. Quantum Gravity 14, 71–76 (1997); e-print arXiv:gr-qc/9602035
Loll, R.: Volume operator in discretized quantum gravity. Phys. Rev. Lett. 75, 3048–3051 (1995); e-print arXiv:gr-qc/9506014
Bianchi, E.: The length operator in loop quantum gravity. Nuclear Phys. B 807, 591–624 (2009); e-print arXiv:0806.4710
Ma, Y., Soo, C., Yang, J.: New length operator for loop quantum gravity. Phys. Rev. D 81(12), 124026-9 (2010); e-print arXiv:1004.1063
Thiemann, T.: A length operator for canonical quantum gravity. J. Math. Phys. 39, 3372–3392 (1998); e-print arXiv:gr-qc/9606092
Major, S.A.: Operators for quantized directions. Class. Quantum Gravity 16, 3859–3877 (1999); e-print arXiv:gr-qc/9905019
Amelino-Camelia, G., Ellis, J., Mavromatos, N.E., Nanopoulos, D.V., Sarkar, S.: Potential sensitivity of gammaray burster observations to wave dispersion in vacuo. Nature 293, 763–765 (1998); e-print arXiv:astro-ph/9712103
Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)
Gambini, R., Pullin, J.: Holography in Spherically Symmetric Loop Quantum Gravity. arXiv:0708.0250 [gr-qc]
Ng, Y.J.: Holographic foam, dark energy and infinite statistics. Phys. Lett. B 657, 10–14 (2007)
Ng, Y.J.: Spacetime foam: from entropy and holography to infinite statistics and non-locality. Entropy 10, 441–461 (2008)
Ng, Y.J.: Holographic quantum foam. arXiv:1001.0411v1 [gr-qc] (2010)
Ng, Y.J.: Various facets of spacetime foam. arXiv:1102.4109v1 [gr-qc] (2011)
Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188–195 (1998)
Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995)
Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)
Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)
Giddings, S.B.: Black holes and massive remnants. Phys. Rev. D 46, 1347–1352 (1992)
Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002)
Arzano, M., Kephart, T.W., Ng, Y.J.: From spacetime foam to holographic foam cosmology. Phys. Lett. B 649, 243–246 (2007)
Rubakov, V.A.: Hierarchies of fundamental constants (to items Nos 16, 17, and 27 from Ginzburg’s list). Phys. Uspekhi Adv. Phys. Sci. 50(4), 390–396 (2007)
Sahni, V.: Dark matter and dark energy. Lecture Notes in Physics 653, 141–180 (2004); e-print. arXiv:astro-ph/0403324v3
Chernin, A.D.: Dark energy and universal antigravitation. Phys. Uspekhi Adv. Phys. Sci. 51(3), 253–282 (2008)
Padmanabhan, T.: Darker side of the Universe. In: 29 International Cosmic Ray Conference Pune, vol. 10, pp. 47–62 (2005)
Chernin, A.D.: Cosmic vacuum. Phys. Uspekhi Adv. Phys. Sci. 11, 1099 (2001)
Haisch, B., Rueda, A., Puthoff, H.E.: Inertia as a zero-point field Lorentz force. Phys. Rev. A 49(2), 678–694 (1994)
Zeldovich, YuB: Cosmological constant and elementary particles. Zh. Eksp. Teor. Fiz. Pis’ma 6, 883–884 (1967)
Puthoff, H.E.: Gravity as a zero-point fluctuation force. Phys. Rev. A 39(5), 2333–2342 (1989)
Carlip, S.: Comment on gravity as a zero-point fluctuation force. Phys. Rev. A 47(4), 3452–3453 (1993)
Puthoff, H.W.: Gravity as a zero-point fluctuation force. Phys. Rev. A 47(4), 3454–3455 (1993)
Haisch, B., Rueda, A., Puthoff, H.E.: Physics of the zero-point field: implications for inertia, gravitation and mass. Specul. Sci. Technol. 20, 99–114 (1997)
Cole, D.C., Rueda, A., Danley, K.: Physics of the zero-point field: implications for inertia, gravitation and mass. Phys. Rev. A 63(5), 054101-2 (2001)
Dicke, R.H.: Gravitation without a principle of equivalence. Rev. Mod. Phys. 29(3), 363–376 (1957); see also R.H. Dicke, “Mach’s Principle and Equivalence. In: Moller, C. (ed.) Proceedings of the International School of Physics “Enrico Fermi” Course XX, Evidence for Gravitational Theories, pp. 1–49. Academic Press, New York (1961)
Wilson, H.A.: An electromagnetic theory of gravitation. Phys. Rev. 17(1), 54–59 (1921)
Caligiuri, L.M., Sorli, A.: Relativistic energy and mass originate from homogeneity of space and time and from Quantum Vacuum energy density. Am. J. Mod. Phys. 3(2), 51–59 (2014)
Caligiuri, L.M., Sorli, A.: Special theory of relativity postulated on homogeneity of space and time and on relativity principle. Am. J. Mod. Phys. 2(6), 375–382 (2013)
Fiscaletti, D., Sorli, A.: About a new suggested interpretation of special theory of relativity within a three-dimensional Euclid space. Ann. UMCS Sectio AAA: Phys. LXVIII, 39–62 (2013)
Sorli, A.: Relative velocity of material change into a 3D quantum vacuum. J. Adv. Phys. 1(1), 110–112 (2012)
Einstein, A.: Sitzungsberichte der Preussische Akademie der Wissenschaften 142–152 (1917)
Friedmann, A.: Leningrad (St. Petersbourg), Russia (1924)
Lemaitre, G.: L’univers en expansion. Ann. Soc. Sci. Brux. A 47, 49–59 (1927)
De Sitter, W.: On Einstein’s theory of gravitation and its astronomical consequences. Third paper. MNRAS 78, 3–28 (1917)
Letter from Lemaitre to Einstein on 3 Oct. 1947, (see e.g. J.P. Luminet, “Essais de cosmologie”, Seuil, Paris (1997))
Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75(3), 559–606 (2003); e-print arXiv:astro-ph/0207347
Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15(11), 1753–1935 (2006)
Sahni, V., Starobinsky, A.: The case for a positive cosmological-term. Int. J. Mod. Phys. D 9, 373–444 (2000)
Padmanabhan, T.: Cosmological constant—the weight of the vacuum. Phys. Rep. 380(5–6), 235–320 (2003); e-print arXiv:hep-th/0212290
Martin, J.: Everything you always wanted to know about the cosmological constant problem. C. R. Phys. 13, 566–665 (2012); e-print arXiv:1205.3365
Solà, J.: Cosmological constant and vacuum energy: old and new ideas. J. Phys. Conf. Ser. 453, 012015 (2013); arXiv:1306.1527 (2013)
Santos, E.: Quantum vacuum fluctuations and dark energy. arXiv:0812.4121v2 [gr-qc] (2009)
Santos, E.: Space–time curvature induced by quantum vacuum fluctuations as an alternative to dark energy. Int. J. Theor. Phys. 50(7), 2125–2133 (2010)
Santos, E.: Dark energy as a curvature of space–time induced by quantum vacuum fluctuations. arXiv:1006.5543 (2010)
Fiscaletti, D., Sorli, A.: Space–time curvature of general relativity and energy density of a three-dimensional quantum vacuum. Ann. UMCS Sectio AAA: Phys. LXIX, 55–80 (2014)
Hu, B.L.: General relativity as geometro-hydrodynamics, invited talk at the Second Sakharov Conference, Moscow, May 1996; e-print arXiv:gr-qc/9607070 (1996)
Adler, S.L.: Einstein gravity as a symmetry-breaking effect in quantum field theory. Rev. Mod. Phys. 54(3), 729–766 (1982)
Hu, B.L.: Can spacetime be a condensate? Int. J. Theor. Phys. 44(10), 1785–1806 (2005)
Caligiuri, L.M.: The emergence of spacetime and gravity: entropic of geometro-hydrodynamic process? A comparison and critical review. Quantum Matter, special Issue “The quantum world and the geometry of space”, 3(3), 246–252 (2014)
Wilczek, F.: Origins of Mass. http://arxiv.org/pdf/1206.7114.pdf (2012)
Ghao, S.: Why gravity is fundamental. arXiv:1001-3029v3 (2010)
Mazur, P.O., Mottola, E.: Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. 101(26), 9545–9550 (2004)
Martins, A.A.: Fluidic Electrodynamics: on parallels between electromagnetic and fluidic inertia. arXiv:1202.4611 (2012)
Pinheiro, M.J., Büker, M.: An extended dynamical equation of motion, phase dependency and inertial backreaction. arXiv:1208.3458 (2012)
Saravani, M., Afshordi, N., Mann, R.B.: Empty black holes, firewalls, and the origin of Bekenstein–Hawking entropy. arXiv:1212.4176 (2013)
Sbitnev, V.: From the Newton’s laws to motion of the fluid and superfluid vacuum: vortex tubes, rings, and others. arXiv:1403.3900v2 [physics.flu-dyn] (2014)
Sbitnev, V.: Hydrodynamics of the physical vacuum: dark matter is an illusion. arXiv:1507.03519v1 [physics.gen-ph] (2015)
Volovik, G.E.: The Universe in a Helium Droplet. Clarendon Press, Oxford (2003)
Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966). doi:10.1103/PhysRev.150.1079
Sbitnev, V.I.: Generalized path integral technique: nanoparticles incident on a slit grating, matter wave interference. In: Bracken, P. (ed.) Advances in Quantum Mechanics, Chapter 9, pp. 183–211. InTech, Rijeka (2013). doi:10.5772/53471
Sbitnev, V.I.: Physical vacuum is a special superfluid medium. In: Pahlavani, M.R. (ed.) Selected Topics in Applications of Quantum Mechanics, Chapter 12, pp. 345–373. InTech, Rijeka (2015). doi:10.5772/59040
Sbitnev, V.I.: Navier–Stokes equation describes the movement of a special superuid medium. Found. Phys. (in Press, 2015); e-print arXiv:1504.07497
de Blok, W.J.G., McGaugh, S.S., Rubin, V.C.: High-resolution rotation curves of low surface brightness galaxies. II. Mass models. Astron. J. 122, 2396–2427 (2001). doi:10.1086/323450
Rubin, V.C.: A brief history of dark matter. In: Livio, M. (ed.) The Dark Universe: Matter, Energy and Gravity, Symposium Series: 15, pp. 1–13. Cambridge University Press, Cambridge (2004)
Hajdukovic, D.S.: Is dark matter an illusion created by the gravitational polarization of the quantum vacuum? Astrophys. Space Sci. 334, 215–218 (2011). doi:10.1007/s10509-011-0744-4
Fritzsch, H. and Solà, J.: Matter non-conservation in the Universe and dynamical dark energy. Class. Quantum Gravity 29, 21, Article ID 215002 (2012)
Solà, J.: Cosmological constant and vacuum energy: old and new ideas. J. Phys. Conf. Ser. 453, 012015 (2013). doi:10.1088/1742-6596/453/1/012015
Solà, J.: Cosmologies with a time-dependent vacuum. J. Phys. Conf. Ser. 283, 1, Article ID 012033 (2011)
Solà, J.: Dark energy: a quantum fossil for the inflationary Universe? J. Phys. A: Math. Theor.41, 16, Article ID164066 (2008)
Solà, J.: Vacuum energy and cosmological evolution. AIP Conf. Proc. 1606, 19–37 (2014)
Reinhold, E., Buning, R., Hollenstein, U., Ivanchik, A., Petitjean, P., Ubachs, W.: Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of \(H_{2}\) spectra. Phys. Rev. Lett. 96, 15, Article ID 151101 (2006)
Ubachs, W., Reinhold, E.: Highly accurate \(H_{2}\) Lyman and Werner Band Laboratory measurements and an improved constraint on a cosmological variation of the proton-to-electron mass ratio. Phys. Rev. Lett. 92, 101302 (2004)
Ivanchik, A., Petitjean, P., Varshalovich, D., et al.: A new constraint on the time dependence of the proton-to-electron mass ratio: analysis of the Q 0347–383 and Q 0405–443 spectra. Astron. Astrophys. 440(1), 45–52 (2005)
Fritzsch, H., Solà, J.: Quantum haplodynamics, dark matter, and dark energy. Adv. High Energy Phys. 2014, Article ID 361587 (2014)
Basilakos, S., Plionis, M., Solà, J.: Hubble expansion and structure formation in time varying vacuum models. Phys. Rev. D 80, 8, Article ID 083511 (2009)
Grande, J., Solà, J., Basilakos, S., Plionis, M.: Hubble expansion and structure formation in the “running FLRW model” of the cosmic evolution. J. Cosmol. Astropart. Phys. 1108, 007 (2011)
Basilakos, S., Polarski, D., Solà, J.: Generalizing the running vacuum energy model and comparing with the entropic-force models. Phys. Rev. D86, Article ID 043010 (2012)
Planck Collaboration (Ade, P.A.R. et al.): Constraints on variation of fundamental constants. arXiv:1406.7482 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fiscaletti, D. About Dark Energy and Dark Matter in a Three-Dimensional Quantum Vacuum Model. Found Phys 46, 1307–1340 (2016). https://doi.org/10.1007/s10701-016-0021-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10701-016-0021-z
Keywords
- General relativity
- Space–time
- Three-dimensional quantum vacuum
- Quantum vacuum energy density
- Dark energy
- Dark matter