Skip to main content

About Dark Energy and Dark Matter in a Three-Dimensional Quantum Vacuum Model


A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. The possibility to provide an unifying explanation of dark matter and dark energy as phenomena linked with the fluctuations of the three-dimensional quantum vacuum is explored. The changes and fluctuations of the quantum vacuum energy density generate a curvature of space–time similar to the curvature produced by a “dark energy” density. The formation of large scale structures in the universe associated to the flattening of the orbital speeds of the spiral galaxies can be explained in terms of primary fluctuations of the quantum vacuum energy density without attracting the idea of dark matter.

This is a preview of subscription content, access via your institution.


  1. An analogous limitation holds in time.


  1. Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Doklady Akad. Nauk S.S.S.R 177(1), 70–71 (1967)

    ADS  Google Scholar 

  2. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1971)

    Google Scholar 

  3. Rueda, A., Haisch, B.: Gravity and the quantum vacuum inertia hypothesis. Ann. Phys. 14(8), 479–498 (2005); e-print arXiv:gr-qc/0504061v3 (2005)

  4. Puthoff, H.E.: Polarizable-vacuum (PV) approach to general relativity. Found. Phys. 32(6), 927–943 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Consoli, M.: Do potentials require massless particles? Phys. Rev. Lett. B 672(3), 270–274 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Consoli, M.: On the low-energy spectrum of spontaneously broken phi4 theories. Mod. Phys. Lett. A 26, 531–542 (2011); e-print arXiv:0904.1272 [gr-qc]

  7. Consoli, M.: The vacuum condensates: a bridge between particle physics to gravity? In: Licata, I., Sakaji, A. (eds.) Vision of Oneness. Aracne Editrice, Roma (2011)

    Google Scholar 

  8. Milonni, P.W.: The Quantum Vacuum—An Introduction to Quantum Electrodynamics. Academic Press, New York (1994)

    Google Scholar 

  9. Daywitt, W.C.: The source of the quantum vacuum. Prog. Phys. 1, 27–32 (2009)

    Google Scholar 

  10. Rovelli, C.: Loop quantum gravity. Phys. World 7(11), 1–5 (2003)

    MATH  Google Scholar 

  11. Rovelli, C.: Loop quantum gravity. (2008)

  12. Rovelli, C.: A new look at loop quantum gravity. Class. Quantum Gravity 28(11), 114005 (2011); e-print arXiv:1004.1780v1 [gr-qc]

  13. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nuclear Phys. B 442, 593–619 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Lewandowski, J.: Volume and quantizations. Class. Quantum Gravity 14, 71–76 (1997); e-print arXiv:gr-qc/9602035

  15. Loll, R.: Volume operator in discretized quantum gravity. Phys. Rev. Lett. 75, 3048–3051 (1995); e-print arXiv:gr-qc/9506014

  16. Bianchi, E.: The length operator in loop quantum gravity. Nuclear Phys. B 807, 591–624 (2009); e-print arXiv:0806.4710

  17. Ma, Y., Soo, C., Yang, J.: New length operator for loop quantum gravity. Phys. Rev. D 81(12), 124026-9 (2010); e-print arXiv:1004.1063

  18. Thiemann, T.: A length operator for canonical quantum gravity. J. Math. Phys. 39, 3372–3392 (1998); e-print arXiv:gr-qc/9606092

  19. Major, S.A.: Operators for quantized directions. Class. Quantum Gravity 16, 3859–3877 (1999); e-print arXiv:gr-qc/9905019

  20. Amelino-Camelia, G., Ellis, J., Mavromatos, N.E., Nanopoulos, D.V., Sarkar, S.: Potential sensitivity of gammaray burster observations to wave dispersion in vacuo. Nature 293, 763–765 (1998); e-print arXiv:astro-ph/9712103

  21. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Gambini, R., Pullin, J.: Holography in Spherically Symmetric Loop Quantum Gravity. arXiv:0708.0250 [gr-qc]

  23. Ng, Y.J.: Holographic foam, dark energy and infinite statistics. Phys. Lett. B 657, 10–14 (2007)

    Article  ADS  Google Scholar 

  24. Ng, Y.J.: Spacetime foam: from entropy and holography to infinite statistics and non-locality. Entropy 10, 441–461 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ng, Y.J.: Holographic quantum foam. arXiv:1001.0411v1 [gr-qc] (2010)

  26. Ng, Y.J.: Various facets of spacetime foam. arXiv:1102.4109v1 [gr-qc] (2011)

  27. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188–195 (1998)

    Article  Google Scholar 

  28. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  30. Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  31. Giddings, S.B.: Black holes and massive remnants. Phys. Rev. D 46, 1347–1352 (1992)

    Article  ADS  Google Scholar 

  32. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Arzano, M., Kephart, T.W., Ng, Y.J.: From spacetime foam to holographic foam cosmology. Phys. Lett. B 649, 243–246 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Rubakov, V.A.: Hierarchies of fundamental constants (to items Nos 16, 17, and 27 from Ginzburg’s list). Phys. Uspekhi Adv. Phys. Sci. 50(4), 390–396 (2007)

    Article  ADS  Google Scholar 

  35. Sahni, V.: Dark matter and dark energy. Lecture Notes in Physics 653, 141–180 (2004); e-print. arXiv:astro-ph/0403324v3

  36. Chernin, A.D.: Dark energy and universal antigravitation. Phys. Uspekhi Adv. Phys. Sci. 51(3), 253–282 (2008)

    Article  ADS  Google Scholar 

  37. Padmanabhan, T.: Darker side of the Universe. In: 29 International Cosmic Ray Conference Pune, vol. 10, pp. 47–62 (2005)

  38. Chernin, A.D.: Cosmic vacuum. Phys. Uspekhi Adv. Phys. Sci. 11, 1099 (2001)

    Article  ADS  Google Scholar 

  39. Haisch, B., Rueda, A., Puthoff, H.E.: Inertia as a zero-point field Lorentz force. Phys. Rev. A 49(2), 678–694 (1994)

    Article  ADS  Google Scholar 

  40. Zeldovich, YuB: Cosmological constant and elementary particles. Zh. Eksp. Teor. Fiz. Pis’ma 6, 883–884 (1967)

    ADS  Google Scholar 

  41. Puthoff, H.E.: Gravity as a zero-point fluctuation force. Phys. Rev. A 39(5), 2333–2342 (1989)

    Article  ADS  Google Scholar 

  42. Carlip, S.: Comment on gravity as a zero-point fluctuation force. Phys. Rev. A 47(4), 3452–3453 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  43. Puthoff, H.W.: Gravity as a zero-point fluctuation force. Phys. Rev. A 47(4), 3454–3455 (1993)

    Article  ADS  Google Scholar 

  44. Haisch, B., Rueda, A., Puthoff, H.E.: Physics of the zero-point field: implications for inertia, gravitation and mass. Specul. Sci. Technol. 20, 99–114 (1997)

    Article  Google Scholar 

  45. Cole, D.C., Rueda, A., Danley, K.: Physics of the zero-point field: implications for inertia, gravitation and mass. Phys. Rev. A 63(5), 054101-2 (2001)

    Article  ADS  Google Scholar 

  46. Dicke, R.H.: Gravitation without a principle of equivalence. Rev. Mod. Phys. 29(3), 363–376 (1957); see also R.H. Dicke, “Mach’s Principle and Equivalence. In: Moller, C. (ed.) Proceedings of the International School of Physics “Enrico Fermi” Course XX, Evidence for Gravitational Theories, pp. 1–49. Academic Press, New York (1961)

  47. Wilson, H.A.: An electromagnetic theory of gravitation. Phys. Rev. 17(1), 54–59 (1921)

    Article  ADS  Google Scholar 

  48. Caligiuri, L.M., Sorli, A.: Relativistic energy and mass originate from homogeneity of space and time and from Quantum Vacuum energy density. Am. J. Mod. Phys. 3(2), 51–59 (2014)

    Article  Google Scholar 

  49. Caligiuri, L.M., Sorli, A.: Special theory of relativity postulated on homogeneity of space and time and on relativity principle. Am. J. Mod. Phys. 2(6), 375–382 (2013)

    Article  Google Scholar 

  50. Fiscaletti, D., Sorli, A.: About a new suggested interpretation of special theory of relativity within a three-dimensional Euclid space. Ann. UMCS Sectio AAA: Phys. LXVIII, 39–62 (2013)

    ADS  Google Scholar 

  51. Sorli, A.: Relative velocity of material change into a 3D quantum vacuum. J. Adv. Phys. 1(1), 110–112 (2012)

    Article  Google Scholar 

  52. Einstein, A.: Sitzungsberichte der Preussische Akademie der Wissenschaften 142–152 (1917)

  53. Friedmann, A.: Leningrad (St. Petersbourg), Russia (1924)

  54. Lemaitre, G.: L’univers en expansion. Ann. Soc. Sci. Brux. A 47, 49–59 (1927)

    Google Scholar 

  55. De Sitter, W.: On Einstein’s theory of gravitation and its astronomical consequences. Third paper. MNRAS 78, 3–28 (1917)

    Article  ADS  Google Scholar 

  56. Letter from Lemaitre to Einstein on 3 Oct. 1947, (see e.g. J.P. Luminet, “Essais de cosmologie”, Seuil, Paris (1997))

  57. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75(3), 559–606 (2003); e-print arXiv:astro-ph/0207347

  58. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15(11), 1753–1935 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Sahni, V., Starobinsky, A.: The case for a positive cosmological-term. Int. J. Mod. Phys. D 9, 373–444 (2000)

    ADS  Google Scholar 

  60. Padmanabhan, T.: Cosmological constant—the weight of the vacuum. Phys. Rep. 380(5–6), 235–320 (2003); e-print arXiv:hep-th/0212290

  61. Martin, J.: Everything you always wanted to know about the cosmological constant problem. C. R. Phys. 13, 566–665 (2012); e-print arXiv:1205.3365

  62. Solà, J.: Cosmological constant and vacuum energy: old and new ideas. J. Phys. Conf. Ser. 453, 012015 (2013); arXiv:1306.1527 (2013)

  63. Santos, E.: Quantum vacuum fluctuations and dark energy. arXiv:0812.4121v2 [gr-qc] (2009)

  64. Santos, E.: Space–time curvature induced by quantum vacuum fluctuations as an alternative to dark energy. Int. J. Theor. Phys. 50(7), 2125–2133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. Santos, E.: Dark energy as a curvature of space–time induced by quantum vacuum fluctuations. arXiv:1006.5543 (2010)

  66. Fiscaletti, D., Sorli, A.: Space–time curvature of general relativity and energy density of a three-dimensional quantum vacuum. Ann. UMCS Sectio AAA: Phys. LXIX, 55–80 (2014)

    Google Scholar 

  67. Hu, B.L.: General relativity as geometro-hydrodynamics, invited talk at the Second Sakharov Conference, Moscow, May 1996; e-print arXiv:gr-qc/9607070 (1996)

  68. Adler, S.L.: Einstein gravity as a symmetry-breaking effect in quantum field theory. Rev. Mod. Phys. 54(3), 729–766 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  69. Hu, B.L.: Can spacetime be a condensate? Int. J. Theor. Phys. 44(10), 1785–1806 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Caligiuri, L.M.: The emergence of spacetime and gravity: entropic of geometro-hydrodynamic process? A comparison and critical review. Quantum Matter, special Issue “The quantum world and the geometry of space”, 3(3), 246–252 (2014)

  71. Wilczek, F.: Origins of Mass. (2012)

  72. Ghao, S.: Why gravity is fundamental. arXiv:1001-3029v3 (2010)

  73. Mazur, P.O., Mottola, E.: Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. 101(26), 9545–9550 (2004)

    Article  ADS  Google Scholar 

  74. Martins, A.A.: Fluidic Electrodynamics: on parallels between electromagnetic and fluidic inertia. arXiv:1202.4611 (2012)

  75. Pinheiro, M.J., Büker, M.: An extended dynamical equation of motion, phase dependency and inertial backreaction. arXiv:1208.3458 (2012)

  76. Saravani, M., Afshordi, N., Mann, R.B.: Empty black holes, firewalls, and the origin of Bekenstein–Hawking entropy. arXiv:1212.4176 (2013)

  77. Sbitnev, V.: From the Newton’s laws to motion of the fluid and superfluid vacuum: vortex tubes, rings, and others. arXiv:1403.3900v2 [physics.flu-dyn] (2014)

  78. Sbitnev, V.: Hydrodynamics of the physical vacuum: dark matter is an illusion. arXiv:1507.03519v1 [physics.gen-ph] (2015)

  79. Volovik, G.E.: The Universe in a Helium Droplet. Clarendon Press, Oxford (2003)

    MATH  Google Scholar 

  80. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966). doi:10.1103/PhysRev.150.1079

    Article  ADS  Google Scholar 

  81. Sbitnev, V.I.: Generalized path integral technique: nanoparticles incident on a slit grating, matter wave interference. In: Bracken, P. (ed.) Advances in Quantum Mechanics, Chapter 9, pp. 183–211. InTech, Rijeka (2013). doi:10.5772/53471

  82. Sbitnev, V.I.: Physical vacuum is a special superfluid medium. In: Pahlavani, M.R. (ed.) Selected Topics in Applications of Quantum Mechanics, Chapter 12, pp. 345–373. InTech, Rijeka (2015). doi:10.5772/59040

  83. Sbitnev, V.I.: Navier–Stokes equation describes the movement of a special superuid medium. Found. Phys. (in Press, 2015); e-print arXiv:1504.07497

  84. de Blok, W.J.G., McGaugh, S.S., Rubin, V.C.: High-resolution rotation curves of low surface brightness galaxies. II. Mass models. Astron. J. 122, 2396–2427 (2001). doi:10.1086/323450

    Article  ADS  Google Scholar 

  85. Rubin, V.C.: A brief history of dark matter. In: Livio, M. (ed.) The Dark Universe: Matter, Energy and Gravity, Symposium Series: 15, pp. 1–13. Cambridge University Press, Cambridge (2004)

    Chapter  Google Scholar 

  86. Hajdukovic, D.S.: Is dark matter an illusion created by the gravitational polarization of the quantum vacuum? Astrophys. Space Sci. 334, 215–218 (2011). doi:10.1007/s10509-011-0744-4

    Article  ADS  MATH  Google Scholar 

  87. Fritzsch, H. and Solà, J.: Matter non-conservation in the Universe and dynamical dark energy. Class. Quantum Gravity 29, 21, Article ID 215002 (2012)

  88. Solà, J.: Cosmological constant and vacuum energy: old and new ideas. J. Phys. Conf. Ser. 453, 012015 (2013). doi:10.1088/1742-6596/453/1/012015

  89. Solà, J.: Cosmologies with a time-dependent vacuum. J. Phys. Conf. Ser. 283, 1, Article ID 012033 (2011)

  90. Solà, J.: Dark energy: a quantum fossil for the inflationary Universe? J. Phys. A: Math. Theor.41, 16, Article ID164066 (2008)

  91. Solà, J.: Vacuum energy and cosmological evolution. AIP Conf. Proc. 1606, 19–37 (2014)

    Article  ADS  Google Scholar 

  92. Reinhold, E., Buning, R., Hollenstein, U., Ivanchik, A., Petitjean, P., Ubachs, W.: Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of \(H_{2}\) spectra. Phys. Rev. Lett. 96, 15, Article ID 151101 (2006)

  93. Ubachs, W., Reinhold, E.: Highly accurate \(H_{2}\) Lyman and Werner Band Laboratory measurements and an improved constraint on a cosmological variation of the proton-to-electron mass ratio. Phys. Rev. Lett. 92, 101302 (2004)

    Article  ADS  Google Scholar 

  94. Ivanchik, A., Petitjean, P., Varshalovich, D., et al.: A new constraint on the time dependence of the proton-to-electron mass ratio: analysis of the Q 0347–383 and Q 0405–443 spectra. Astron. Astrophys. 440(1), 45–52 (2005)

    Article  ADS  Google Scholar 

  95. Fritzsch, H., Solà, J.: Quantum haplodynamics, dark matter, and dark energy. Adv. High Energy Phys. 2014, Article ID 361587 (2014)

  96. Basilakos, S., Plionis, M., Solà, J.: Hubble expansion and structure formation in time varying vacuum models. Phys. Rev. D 80, 8, Article ID 083511 (2009)

  97. Grande, J., Solà, J., Basilakos, S., Plionis, M.: Hubble expansion and structure formation in the “running FLRW model” of the cosmic evolution. J. Cosmol. Astropart. Phys. 1108, 007 (2011)

    Article  ADS  Google Scholar 

  98. Basilakos, S., Polarski, D., Solà, J.: Generalizing the running vacuum energy model and comparing with the entropic-force models. Phys. Rev. D86, Article ID 043010 (2012)

  99. Planck Collaboration (Ade, P.A.R. et al.): Constraints on variation of fundamental constants. arXiv:1406.7482 (2014)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Davide Fiscaletti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiscaletti, D. About Dark Energy and Dark Matter in a Three-Dimensional Quantum Vacuum Model. Found Phys 46, 1307–1340 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • General relativity
  • Space–time
  • Three-dimensional quantum vacuum
  • Quantum vacuum energy density
  • Dark energy
  • Dark matter