Foundations of Physics

, Volume 46, Issue 7, pp 804–814 | Cite as

Remote State Preparation for Quantum Fields

  • Ran BerEmail author
  • Erez Zohar


Remote state preparation is generation of a desired state by a remote observer. In spite of causality, it is well known, according to the Reeh–Schlieder theorem, that it is possible for relativistic quantum field theories, and a “physical” process achieving this task, involving superoscillatory functions, has recently been introduced. In this work we deal with non-relativistic fields, and show that remote state preparation is also possible for them, hence obtaining a Reeh–Schlieder-like result for general fields. Interestingly, in the nonrelativistic case, the process may rely on completely different resources than the ones used in the relativistic case.


Remote state preparation Quantum fields Superoscillations Reeh-Schlieder theorem 



The authors wish to thank B. Reznik and O. Kenneth for helpful discussions. EZ acknowledges the support of the Alexander-von-Humboldt foundation.


  1. 1.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Reeh, H., Schlieder, S.: Bemerkungen zur Unitäräquivalenz von lorentzinvarianten Feldern. Nuovo Cim. 22, 1051 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Schlieder, S.: Some remarks about the localization of states in a quantum field theory. Commun. Math. Phys. 1, 265 (1965)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Haag, R.: Local Quantum Physics: Fields. Algebras, Texts and Monographs in Physics Springer, Particles (1996). ISBN 9783540610496Google Scholar
  7. 7.
    Ber, R., Kenneth, O., Reznik, B.: Superoscillations underlying remote state preparation for relativistic fields. Phys. Rev. A 91, 052312 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Berry, M.: Celebration of the 60th Birthday of Yakir Aharonov. World Scientific, Singapore, pp. 55–65 (1994a)Google Scholar
  10. 10.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Flanders, H.: Differential Forms with Applications to the Physical Sciences. Dover Publications, Mineola (1989)Google Scholar
  13. 13.
    Berry, M.: Evanescent and real waves in quantum billiards and Gaussian beams. J. Phys. A 27, L391 (1994b)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Reznik, B.: Trans-Planckian tail in a theory with a cutoff. Phys. Rev. D 55, 2152 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists: A Comprehensive Guide. Academic Press (2012)Google Scholar
  16. 16.
    Clifton, R., Feldman, D.V., Halvorson, H., Redhead, M.L., Wilce, A.: Superentangled states. Phys. Rev. A 58, 135 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Verch, R., Werner, R.F.: Distillability and positivity of partial transposes in general quantum field systems. Rev. Math. Phys. 17, 545 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Peskin, M.E., Schroeder, D.V.: An Introduction To Quantum Field Theory. Westview Press (1995)Google Scholar
  19. 19.
    Hegerfeldt, G.: Remark on causality and particle localization. Phys. Rev. D 10, 3320 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    Hegerfeldt, G., Ruijsenaars, S.: Remarks on causality, localization, and spreading of wave packets. Phys. Rev. D 22, 377 (1980)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hegerfeldt, G.: Causality problems for Fermi’s two-atom system. Phys. Rev. Lett. 72, 596 (1994)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Petrosky, T., Ordonez, G., Prigogine, I.: Quantum transitions and nonlocality. Phys. Rev. A 62, 042106 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Max-Planck-Institut für QuantenoptikGarching bei MünchenGermany

Personalised recommendations