Skip to main content
Log in

Critique of Quantum Optical Experimental Refutations of Bohr’s Principle of Complementarity, of the Wootters–Zurek Principle of Complementarity, and of the Particle–Wave Duality Relation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

I argue that quantum optical experiments that purport to refute Bohr’s principle of complementarity (BPC) fail in their aim. Some of these experiments try to refute complementarity by refuting the so called particle–wave duality relations, which evolved from the Wootters–Zurek reformulation of BPC (WZPC). I therefore consider it important for my forgoing arguments to first recall the essential tenets of BPC, and to clearly separate BPC from WZPC, which I will argue is a direct contradiction of BPC. This leads to a need to consider the meaning of particle–wave duality relations and to question their fundamental status. I further argue (albeit, in opposition to BPC) that particle and wave complementary concepts are on a different footing than other pairs of complementary concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See reference [51] for an early proposal for realisable intermediate experiments.

  2. This view was expressed by Prof. D. Bohm in private discussions during the years 1980 to 1985. Though I have never found a categoric statement in Bohr’s writings to support this view, there are indications in his writings pointing to this view, for example, Bohr writes, “...the appropriate physical interpretation of the symbolic quantum-mechanical formalism amounts only to predictions, of determinate or statistical character, pertaining to individual phenomena appearing under conditions defined by classical physical concepts.” [5, p. 238].

  3. In his article Drezet discusses the reality of trajectories and BPC in the context of arguing that the recently introduced Pusey, Barret and Rudolf (PBR) Theorem, concerned with ontic and epistemic hidden variable theories, does not preclude the causal interpretation (sometimes also referred to as Bohmian mechanics).

  4. Photons are bosons and are governed by the second quantized Maxwell equations. In the causal interpretation of boson fields, fundamental entities are purely fields; there are no boson particles. In this case WZPC cannot be given meaning based on this ontology.

  5. The R and S-fields defined by \(\psi =R\exp (iS/\hbar )\) are not independent of each other. Both play an equal part in determining a particles motion, the R-field through the quantum potential \(Q= -\hbar ^2/(2m)\nabla ^2 R/R\), and the S-field through the guidance formula \(v=\nabla S/m\).

  6. Actually, in computer models of the two-slit experiment [6368] it is seen that trajectories never cross so that a particles path can be theoretically determined with certainty even when their is interference, and irrespective of whether the experiment is of an intermediate type or not.

  7. Drezet also makes this point in his two articles given in Refs. [72, 73]. In [73] Drezet discusses the duality relation in some detail in the context of arguing against Afshar’s claimed experimental refutation of BPC.

  8. We will not here take up the question of whether or not all measurements can ultimately be reduced to position measurement, but assume that this is the case.

  9. According to Bohm this requirement is needed so that \(H_I\) does not produce any uncontrollable changes in the observable Q, but only in observables that do not commute with Q. However, according to quantum theory, an arbitrary initial wave function cannot have a well defined eigenvalue of Q prior to measurement, unless it is an eigenstate of the observable being measured. It is the measurement process that changes the wave function into an eigenfunction of Q, with a corresponding definite eigenvalue q. In general, therefore, both the wave function and the value of Q is changed by a measurement. If this were not the case one could equally well envisage a mutually exclusive impulsive measurement that does not change the value of an observable P that does not commute with Q. This would imply that both Q and P have well defined values prior to measurement, whereas the wavefunction does not describe these values. This would constitute a variant of the EPR incompleteness argument. We conclude that Q and P cannot have definite values prior to measurement, unless the wave function is an eigenstate of one of them, in which case, only that observable will have a definite value.

  10. This differs from the EPR criteria for elements of reality, since in the EPR experiment the system is not an eigenstate of either of the non-commuting observables whose values are predicted with certainty.

  11. Though the R-field gives rise to the quantum potential, the S-field can also explain tunneling since the R and S-fields codetermine one another. See Ref. [63] for a computer model of quantum tunneling based on the causal interpretation.

References

  1. Bohr, N.: The quantum postulate and the recent development of atomic theory at Atti del Congresso Internazionale dei Fisici, Como, 11–20 September 1927. Zanichelli, Bologna, 1928, vol. 2, pp. 565–588 (1928)

  2. Bohr, N.: Substance of the Como lecture is reprinted in Nature, vol. 121, pp. 580–590 (1928)

  3. Bohr, N.: Atomic Theory and the Description of Nature. Cambridge University Press, Cambridge (1934). reprinted 1961

    MATH  Google Scholar 

  4. Bohr, N.: Atomic Physics and Human Knowledge. Science Editions, New York (1961)

    MATH  Google Scholar 

  5. Bohr, N.: Discussion with Einstein on epistemological problems in quantum mechanics. In: Schilpp, P.A. (ed.) Albert Einstein, Philosopher-Scientist, pp. 201–241. Library of Living Philosophers, Evansten (1949). Reprint: (Open Court, La salle, Illinois, third edition, 1982) pp. 201–241

  6. Jammer, M.: The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective. Wiley, New York (1974)

    Google Scholar 

  7. Ghose, P., Home, D., Agarwal, G.S.: An experiment to throw more light on light. Phys. Lett. A 153, 403–406 (1991)

    Article  ADS  Google Scholar 

  8. Brida, G., Genovese, M., Gramegna, M., Predazzi, E.: A conclusive experiment to throw more light on “light”. Phys. Lett. A 328, 313–318 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Mizobuchi, Y., Ohtaké, Y.: An “experiment to throw more light on light”. Phys. Lett. A 168, 1–5 (1992)

    Article  ADS  Google Scholar 

  10. Afshar. S.S.: Violation of the principle of complementarity, and its implications. In: Roychoudhuri, C., Creath, K. (eds.) The Nature of Light: What is a Photon? iProc. SPIE vol. 5866. San Diego: SPIE, pp. 229–244 (2005)

  11. Chown, M.: Quantum Rebel. N. Sci. 183, 30–35 (2004)

    Google Scholar 

  12. Grangier, P., Roger, G., Aspect, A.: Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. EuroPhys. Lett. 1, 173–179 (1986)

    Article  ADS  Google Scholar 

  13. Rauch, H., Treimer, W., Bonse, U.: Test of a single crystal neutron interferometer. Phys. Lett. A 47, 369–371 (1974)

    Article  ADS  Google Scholar 

  14. Rauch, H., Werner, S.: Nuetron Interferometry: Lessons in Experimental Quantum Mechanics. Clarendon Press, Oxford (2000)

    Google Scholar 

  15. Rauch, H., Summhammer, J.: Static versus time-dependent absorption in neutron interferometry. Phys. Lett. A 104, 44–46 (1984)

    Article  ADS  Google Scholar 

  16. Greenberger, D.M., Yasin, A.: Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391–394 (1988)

    Article  ADS  Google Scholar 

  17. Kaloyerou, P.N., Brown, H.R.: On neutron partial absorption experiments. Phys. B 176, 78–92 (1992)

    Article  ADS  Google Scholar 

  18. Brown, H.R., Summhammer, J., Callaghan, R.E., Kaloyerou, P.N.: Neutron interferometry with antiphase modulation. Phys. lett. A 163, 21–25 (1992)

    Article  ADS  Google Scholar 

  19. Badurek, G., Rauch, H., Tuppinger, D.: Neutron interferometric double-resonance experiment. Phys. Rev. A 34, 2600–2608 (1986)

    Article  ADS  Google Scholar 

  20. Bogár, P., Bergou, J.: Entanglement of atomic beams: tests of complementarity and other applications. Phys. Rev. A 53, 49–52 (1996)

    Article  ADS  Google Scholar 

  21. Dürr, S., Nonn, T., Rempe, G.: Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature 395, 33–37 (1998)

    Article  ADS  Google Scholar 

  22. Li, Z.-Y.: Atom interferometers: beyond complementarity principles. arXiv:quant-ph/0109023v1, 4 Sep 2001

  23. Dürr, S., Nonn, T., Rempe, G.: Fringe visibility and which-way information in an atom interferometer. Phys. Rev. Lett. 81, 5705–5709 (1998)

    Article  ADS  Google Scholar 

  24. Bertet, P., Osnaghi, S., Rauschenbeutel, A., Nogues, G., Auffeves, A., Brune, M., Raimond, J.M., Haroche, S.: A complementarity experiment with an interferometer at the quantum classical boundary. Nature 411, 166–170 (2001)

    Article  ADS  Google Scholar 

  25. Scully, M.O., Zubairy, M.S.: Quantum Optics, pp. 494–496. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  26. Marzlin, K.-P., Sanders, B.C., Knight, P.L.: Complementarity and uncertainty relations for matter wave Interferometry. Phys. Rev. A 78, 062107 (2008)

    Article  ADS  Google Scholar 

  27. Ghose, P.: Testing Quantum Mechanics on a New Ground. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  28. Bohm, D.: A suggested interpretation of the quantum theory in Terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180–193 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. de Broglie, L.: Une Interpretation Causale et Non Lindaire de la Mechanique Ondulatoire: la Theorie de la Double Solution. Gauthier-Villars, Paris (1956). [English translation: Non-linear Wave Mechanics: A Causal Interpretation (Elsevier, Amsterdam, 1960)]

  31. de Broglie, L.: The reinterpretation of wave mechanics. Found. Phys. 1, 5–15 (1970)

    Article  ADS  Google Scholar 

  32. Kaloyerou, P.N.: The GRA beam-splitter experiments and particle-wave duality of light. J. Phys. A 39, 11541–11566 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kaloyerou, P.N.: Investigation of the Quantum Potential in the Relativistic Domain. PhD Thesis, University of London (1985)

  34. Bohm, D., Hiley, B.J., Kaloyerou, P.N.: An ontological basis for the quantum theory: a causal interpretation of quantum fields. Phys. Rep. 144, 349–375 (1987)

    Article  MathSciNet  Google Scholar 

  35. Kaloyerou, P.N.: The causal interpretation of the electromagnetic field. Phys. Rep. 244, 287–358 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  36. Kaloyerou, P.N.: A field theoretic causal model of the Mach-Zehnder Wheeler delayed-choice experiment. Phys. A 355, 297–318 (2005)

    Article  Google Scholar 

  37. Buks, E., Schuster, R., Hieblum, M., Mahalu, D., Umansky, V.: Dephasing in electron interference by a ‘which-path’ detector. Nature 391, 871–874 (1998)

    Article  ADS  Google Scholar 

  38. Chang, D.-I., Khym, G.L., Kang, K., Chung, Y., Lee, H.-J., Seo, M., Heiblum, M., Mahalu, D., Umansky, V.: Quantum mechanical complementarity probed in a closed-loop Aharanov-Bohm interferometer. Nat. Phys. 4, 205–209 (2008)

    Article  Google Scholar 

  39. Wheeler, J.A.: The “past” and the “delayed-choice” double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic Press, New York (1978)

    Chapter  Google Scholar 

  40. Wheeler, J.A.: Law without law. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 182–213. Princeton University Press, Princeton (1983)

    Chapter  Google Scholar 

  41. Heisenberg, W.: The physical content of quantum kinematics and mechanics. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 62–84. Princeton University Press, Princeton (1983)

    Google Scholar 

  42. Bohm, D., Hiley, B.J., Dewdney, C.: A quantum potential approach to the Wheeler delayed-choice experiment. Nature 315, 294–297 (1985)

    Article  ADS  Google Scholar 

  43. Scully, M.O., Drühl, K.: Quantum erasure: a proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25, 2208–2213 (1982)

    Article  ADS  Google Scholar 

  44. Zajong, A.G., Wang, L.J., Zou, X.Y., Mandel, L.: Quantum eraser. Nature 353, 507–508 (1991)

    Article  ADS  Google Scholar 

  45. Scully, M.O., Englert, B.-G., Walther, H.: Quantum optical tests of complementarity. Nature 351, 111–116 (1991)

    Article  ADS  Google Scholar 

  46. Kwiat, P.G., Steinberg, A.M., Chiao, R.A.: Observation of a “quantum eraser”: a revival of coherence in a two-photon interference experiment. Phys. Rev. A 45, 7729–7739 (1992)

    Article  ADS  Google Scholar 

  47. Herzog, T.G., Kwait, P.G., Weinfurter, H., Zeilinger, A.: Complementarity and the quantum eraser. Phys. Rev. Lett. 75, 3034–3037 (1995)

    Article  ADS  Google Scholar 

  48. Englert, B.-G., Scully, M.O., Walther, H.: Quantum erasure in double-slit interferometers with which-way detectors. Am. J. Phys. 67, 325–329 (1999)

    Article  ADS  Google Scholar 

  49. Kim, Y.-H., Yu, R., Kulik, P., Shih, Y., Scully, M.O.: Delayed “choice” quantum erasure. Phys. Rev. Lett. 84, 1–5 (2000)

    Article  ADS  Google Scholar 

  50. Wootters, W.K., Zurek, W.H.: Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr’s principle. Phys. Rev. D 19, 473–484 (1979)

    Article  ADS  Google Scholar 

  51. Bartell, L.S.: Complementarity in the double-slit experiment: on simple realisable systems for observing intermediate particle-wave behaviour. Phys. Rev. D 21, 1698–1699 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  52. Jaeger, G., Shimony, A., Vaidman, L.: Two Interferometric Complementarities. Phys. Rev. A 51, 54–67 (1995)

    Article  ADS  Google Scholar 

  53. Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154–2157 (1996)

    Article  ADS  Google Scholar 

  54. Jaeger, G., Horne, M.A., Shimony, A.: Complementarity of one-particle and two-particle interference. Phys. Rev. A 48, 1023–1027 (1993)

    Article  ADS  Google Scholar 

  55. Saunders, B.C., Milburn, G.I.: Complementarity in a quantum nondemolitian measurement. Phys. Rev. A 39, 694–702 (1989)

    Article  ADS  Google Scholar 

  56. Zou, X.Y., Wang, L.J., Mandel, L.: Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318–321 (1991)

    Article  ADS  Google Scholar 

  57. Mandel, L.: Coherence and indistinguishability. Opt. Lett. 16, 1882–1883 (1991)

    Article  ADS  Google Scholar 

  58. Liu, H.-Y., Huang, J.-H., Gao, J.-R., Zubairy, M.S., Zhu, S.-Y.: Relation between wave-particle duality and quantum uncertainty. Phy. Rev. A 85, 022106 (2012)

    Article  ADS  Google Scholar 

  59. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. I, II, III. Addison-Wesley, Reading (1964)

    MATH  Google Scholar 

  60. Heisenberg, W.: Questions of principle in modern physics. In: Philosophic Problems in Nuclear Science, p. 49. Translated by F. C. Hayes, Faber and Faber, London (1952)

  61. Heisenberg, W.: Recent changes in the foundations of exact science. In: Philosophic Problems in Nuclear Science, p. 15. Translated by F. C. Hayes, Faber and and Faber, London (1952)

  62. Camilleri, K., Schlosshauer, M.: Niels Bohr as Philosopher of Experiment: Does Decoherence Theory Challenge Bohr’s Doctrine of Classical Concepts? arXiv:1502.06547v1 [physics.hist-ph] 23 Feb 2015

  63. Dewdney, C.: PhD Thesis, University of London (1983)

  64. Dewdney, C., Phillipides, C., Hiley, B.J.: Quantum interference and the quantum potential. Nuovo Cimento B 52, 15–28 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  65. Dewdney, C.: Particle trajectories and interference in a time-dependent model of neutron single crystal interferometry. Phys. Lett. A 109, 377–383 (1985)

    Article  ADS  Google Scholar 

  66. Dewdney, C., Holland, P.R., Kyprianidis, A.: What happens in a spin measurement. Phys. Lett. A 119, 259–267 (1986)

    Article  ADS  Google Scholar 

  67. Dewdney, C., Holland, P.R., Kyprianidis, A.: A quantum potential approach to spin superposition in neutron interferometry. Phys. Lett. A 121, 105–110 (1987)

    Article  ADS  Google Scholar 

  68. Home, D., Kaloyerou, P.N.: New twists to Einstein’s two-slit experiment: complementarity vis-a-vis the causal interpretation. J. Phys. A 22, 3253–3266 (1989)

    Article  ADS  Google Scholar 

  69. Englert, B.-G., Scully, M.O., Süssman, G., Walther, H.: Surrealistic Bohm trajectories. Z. Naturforsch 47a, 1175–1186 (1992)

    ADS  Google Scholar 

  70. Drezet, A.: The PBR theorem seen from the eyes of a Bohmian, arXiv:1409.3478v1 [quant-ph] 11 Sept 2014

  71. Kaloyerou, P.N.: The Wootters-Zurek development of Einstein’s two-slit experiment. Found. Phys. 22, 1345–1377 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  72. Drezet, A.: Complementarity and Afshar’s experiment. arXiv:quant-ph/0508091v3, 22 Dec 2005

  73. Drezet, A.: Wave particle duality and the Afshar experiment. Prog. Phys. 1, 57–64 (2011)

    Google Scholar 

  74. von Neumann, J.: Mathematische Grundlagen der Quantemechanik. Springer, Berlin (1932). English translation: Mathematical Foundations of Quantum Mechanics, trans. by R. T. Beyer (Princeton University Press, Princeton, 1955)

  75. London, F., Bauer, E.: The theory of observation in quantum mechanics. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 217–259. Princeton University Press, Princeton (1983)

    Google Scholar 

  76. Bohm, D.: Quantum Theory. Prentice-Hall Inc, Upper Saddle River (1951)

    Google Scholar 

  77. Wheeler, J.A., Zurek, W.H.: Princeton University Press, Quantum Theory and Measurement. Princeton (1983)

  78. Wigner, E.P.: Interpretation of quantum mechanics. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 217–259. Princeton University Press, Princeton (1983)

    Google Scholar 

  79. Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  80. Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  81. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267–1305 (2005)

    Article  ADS  Google Scholar 

  82. Zurek, W.H.: Decoherence and the transition from quantum to classical, Phys. Today 44, 36–44 (1991), see also the updated version available as eprint quant-ph/0306072

  83. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Aharonov, Y., Vaidman, L.: Measurement of the Schrödinger wave of a single particle. Phys. Lett. A 178, 38 (1993)

    Article  ADS  Google Scholar 

  85. Aharonov, Y., Anandan, J., Vaidman, L.: Meaning of the wave function. Phys. Rev. A 47, 4616 (1993)

    Article  ADS  Google Scholar 

  86. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-\(\frac{1}{2}\) particle can turn out to be 100. Phy. Rev. Lett. 60(14), 1351–1354 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  87. Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41(1), 11 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  88. Steinberg, A., Feizpour, A., Rozema, L., Mahler, D., Hayat, A.: In praise of weakness. Physics World, March Volume, pp. 35–40 (2013)

  89. Lundeen, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox, Phys. Rev. Lett. 102(2), 020404 (2009), and arXiv:0810.4229

  90. Yokota, K., Yamamoto, T., Koashi, M., Imoto, N.: Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys. 11, 033011 (2009)

    Article  ADS  Google Scholar 

  91. Bose, J.C.: Collected Physical Papers, pp. 44–49. Longmans and Green, London (1927)

    MATH  Google Scholar 

  92. Sommerfeld, A.: Optics, pp. 32–33. Academic Press, New York (1964)

    Google Scholar 

  93. Zeilinger, A.: General properties of lossless beam splitters in interferometry. Am. J. Phys. 49, 882–883 (1981)

    Article  ADS  Google Scholar 

  94. Campos, R.A., Saleh, B.E., Teich, M.C.: Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 40, 1371–1384 (1989)

    Article  ADS  Google Scholar 

  95. Loudon, R.: The Quantum Theory of Light, 3rd edn., p. 212. Oxford University Press, Oxford (2000)

  96. Unnikrishnan, C.S., Murthy, S.A.: Some comments on the two prism tunnelling experiment. Phys. Lett. A 221, 1–4 (1996)

    Article  ADS  Google Scholar 

  97. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  98. Tan, S.M., Walls, D.F., Collet, M.J.: Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991)

    Article  ADS  Google Scholar 

  99. Kastner, R.E.: Why the Afshar experiment does not refute complementarity. Hist. Philos. Mod. Phys. 36, 649–658 (2005)

    Article  MATH  Google Scholar 

  100. Kastner, R.E.: On visibility in the Afshar two-slit experiment. Found. Phys. 39, 1139–1144 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  101. Steuernagel, O.: Afshar’s experiment does not show a violation of complementarity. Found. Phys. 37, 1370–1385 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Qureshi, T.: Complementarity and the Afshar experiment. arXiv:quant-ph/0701109v2, 19 Jan 2007

  103. Flores, E.V.: Modified Afshar experiment: calculations. In: Roychoudhuri, C., Kracklauer, A. F., Khrennikov, A.Y. (eds) The Nature of Light: What are Photons? III Proc. SPIE, vol. 7421. San Diego, SPIE pp. 74210W (2009)

  104. Afshar, S.S., Flores, E.V., McDonald, K.F., Knoesel, E.: Paradox in wave-particle duality. Found. Phys. 37, 295–305 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Flores, E.V.: Reply to comments of Steuernagel on the Afshar’s Experiment. Found. Phys. 38, 778–781 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Kaloyerou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaloyerou, P.N. Critique of Quantum Optical Experimental Refutations of Bohr’s Principle of Complementarity, of the Wootters–Zurek Principle of Complementarity, and of the Particle–Wave Duality Relation. Found Phys 46, 138–175 (2016). https://doi.org/10.1007/s10701-015-9959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9959-5

Keywords

Navigation