A Fundamental Form of the Schrodinger Equation

Abstract

We propose a first order equation from which the Schrodinger equation can be derived. Matrices that obey certain properties are introduced for this purpose. We start by constructing the solutions of this equation in one dimension and solve the problem of electron scattering from a step potential. We show that the sum of the spin up and down, reflection and transmission coefficients, is equal to the quantum mechanical results for this problem. Furthermore, we present a three dimensional (3D) version of the equation which can be used to derive the Schrodinger equation in 3D.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928)

    MATH  Article  ADS  Google Scholar 

  2. 2.

    Klein, O.: Die Reflexion von Elektronen an Einem Potentialsprung Nach der Relativistischen Dynamik von Dirac. Z. Phys. 53, 157 (1929)

    MATH  Article  ADS  Google Scholar 

  3. 3.

    Hansen, A., Ravndal, F.: Klein’s paradox and its resolution. Phys. Scr. 23, 1036 (1981)

    Article  ADS  Google Scholar 

  4. 4.

    Holestein, B.R.: Klein’s paradox. Am. J. Phys. 66, 507 (1998)

    Article  ADS  Google Scholar 

  5. 5.

    Dombey, N., Calogeracos, A.: Seventy years of the Klein paradox. Phys. Rep. 315, 41–58 (1999)

    Article  ADS  Google Scholar 

  6. 6.

    Alhaidari, A.D.: Resolution of the Klein paradox. Phys. Scr. 83, 025001 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Adeel Ajaib.

Appendix: Transmission and Reflection Coefficients for \(E>V_0\)

Appendix: Transmission and Reflection Coefficients for \(E>V_0\)

$$\begin{aligned} T_1= & {} \frac{(E+m)(E-{V_0})^{1/2}}{(E-{V_0}+m)E^{1/2}}\left| \frac{C}{A} \right| ^2 \nonumber \\= & {} \frac{4 \sqrt{1-\frac{{V_0}}{E}} \left( E^2+m \sqrt{E (E-{V_0})}-E \left( m+\sqrt{E (E-{V_0})}+{V_0}\right) \right) ^2}{(E+m) (E+m-{V_0}) {V_0}^2}\end{aligned}$$
(54)
$$\begin{aligned} T_2= & {} \frac{(E+m)(E-{V_0})^{1/2}}{(E-{V_0}+m)E^{1/2}}\left| \frac{C'}{A} \right| ^2 \nonumber \\= & {} \frac{4 m \sqrt{E (E-{V_0})} {V_0}^2}{(E+m) (E+m-{V_0}) \left( -2 E-2 \sqrt{E (E-{V_0})}+{V_0}\right) ^2} \end{aligned}$$
(55)
$$\begin{aligned} R_1= & {} \left| \frac{B}{A} \right| ^2 \nonumber \\= & {} \frac{(E-m)^2 {V_0}^2}{(E+m)^2 \left( -2 E-2 \sqrt{E (E-{V_0})}+{V_0}\right) ^2} \end{aligned}$$
(56)
$$\begin{aligned} R_2= & {} \left| \frac{B'}{A} \right| ^2 \nonumber \\= & {} \frac{4 E m {V_0}^2}{(E+m)^2 \left( -2 E-2 \sqrt{E (E-{V_0})}+{V_0}\right) ^2} \end{aligned}$$
(57)

Coefficients for \(E<V_0\)

$$\begin{aligned} \frac{B}{A}= & {} \frac{(-E+m) {V_0}}{(E+m) \left( 2 E-{V_0}+2 i \sqrt{E (-E+{V_0})}\right) } \end{aligned}$$
(58)
$$\begin{aligned} \frac{B'}{A}= & {} \frac{2 \sqrt{E m} {V_0}}{(E+m) \left( -2 i E+i {V_0}+2 \sqrt{E (-E+{V_0})}\right) } \end{aligned}$$
(59)
$$\begin{aligned} \frac{D}{A}= & {} \frac{2 \left( E^2+E (m-{V_0})+i \left( m \sqrt{E (-E+{V_0})}+\sqrt{E^3 (-E+{V_0})}\right) \right) }{(E+m) \left( 2 E-{V_0}+2 i \sqrt{E (-E+{V_0})}\right) } \end{aligned}$$
(60)
$$\begin{aligned} \frac{D'}{A}= & {} \frac{2 \sqrt{E m} {V_0}}{(E+m) \left( -2 i E+i {V_0}+2 \sqrt{E (-E+{V_0})}\right) } \end{aligned}$$
(61)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ajaib, M.A. A Fundamental Form of the Schrodinger Equation. Found Phys 45, 1586–1598 (2015). https://doi.org/10.1007/s10701-015-9944-z

Download citation

Keywords

  • Quantum mechanics
  • Schrodinger equation
  • Step potential problem
  • Scattering problems