Skip to main content
Log in

Quantum Theory as a Critical Regime of Language Dynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Some mathematical theories in physics justify their explanatory superiority over earlier formalisms by the clarity of their postulates. In particular, axiomatic reconstructions drive home the importance of the composition rule and the continuity assumption as two pillars of quantum theory. Our approach sits on these pillars and combines new mathematics with a testable prediction. If the observer is defined by a limit on string complexity, information dynamics leads to an emergent continuous model in the critical regime. Restricting it to a family of binary codes describing ‘bipartite systems,’ we find strong evidence of an upper bound on bipartite correlations equal to 2.82537. This is measurably different from the Tsirelson bound. The Hilbert space formalism emerges from this mathematical investigation as an effective description of a fundamental discrete theory in the critical regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, S.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  2. Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007)

    Article  ADS  Google Scholar 

  3. Bell, J.: On the Einstein–Podolsky–Rosen paradox. Physica 1, 195–200 (1964)

    Google Scholar 

  4. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. Phys. 37 823–843 (1936) (Reprinted in J. von Neumann, Collected Works, Pergamon Press, Oxford, 1961, Vol. IV, pp. 105–125)

  5. Bohr, N.: Atomic Theory and the Description of Nature. Cambridge University Press, Cambridge (1934)

    MATH  Google Scholar 

  6. Bohr, N.: Atomic Theory and Human Knowledge. Wiley, New York (1958)

    Google Scholar 

  7. Chiribella, G., d’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84, 012311 (2011)

    Article  ADS  Google Scholar 

  8. Christensen, B.G., et al.: Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013)

    Article  ADS  Google Scholar 

  9. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  10. Clifton, R., Bub, J., Halvorson, H.: Characterizing quantum theory in terms of information-theoretic constraints. Found. Phys. 33(11), 1561–1591 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dakić B., Brukner, Č.: Quantum theory and beyond: Is entanglement special? In: Halvorson, H. (ed) Deep Beauty: Understanding the Quantum World through Mathematical Innovation, pp. 365–392, Cambridge University Press, Cambridge (2011). arXiv:0911.0695

  12. El-Showk, S., et al.: Solving the 3D ising model with the conformal bootstrap. Phys. Rev. D 86, 025022 (2012). arXiv:1203.6064

  13. El-Showk, S., et al.: Solving the 3D ising model with the conformal bootstrap ii. C-minimization and precise critical exponents. J. Stat. Phys. 157, pp. 869–914 (2014). arXiv:1403.4545

  14. Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  15. Gorelik, G., Frenkel, V.: Matvei Petrovich Bronstein and Soviet Theoretical Physics in the Thirties. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  16. Grinbaum, A.: Reconstruction of quantum theory. Br. J. Philos. Sci. 58, 387–408 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hardy, L.: Quantum theory from five reasonable axioms (2000). arXiv:quant-ph/00101012

  18. Hilbert, D., von Neumann, J., Nordheim, L.: Über die Grundlagen der Quantenmechanik. Math. Ann. 98, 1–30 (1927) (Reprinted in J. von Neumann, Collected Works, Pergamon Press, Oxford, 1961, Vol. I, pp. 104–133)

  19. Jammer, M.: The Philosophy of Quantum Mechanics. Wiley, New York (1974)

    Google Scholar 

  20. Khrennikov, A., Schumann, A.: Quantum non-objectivity from performativity of quantum phenomena. Phys. Scr. T163, 014020 (2014). arXiv:1404.7077

    Article  ADS  Google Scholar 

  21. Landsman, N.: Mathematical Topics Between Classical and Quantum Mechanics. Spinger, New York (1998)

    Book  Google Scholar 

  22. Mackey, G.: Quantum mechanics and Hilbert space. Am. Math. Mon. 64, 45–57 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  23. Manin, Y.: Complexity vs. energy: theory of computation and theoretical physics. J. Phys. 532, 012018 (2014). arXiv:1302.6695

    Google Scholar 

  24. Manin, Y., Marcolli, M.: Errorcorrecting codes and phase transitions. Math. Comput. Sci. 5, pp. 155–179 (2011). arXiv:0910.5135

  25. Manin, Y., Marcolli, M.: Kolmogorov complexity and the asymptotic bound for errorcorrecting codes. J. Differ. Geom. 97(1), 91–108 (2014). arXiv:1203.0653

  26. Masanes, L., Müller, M.: A derivation of quantum theory from physical requirements. New J. Phys. 13, 063001 (2011)

    Article  ADS  Google Scholar 

  27. Nawareg, M., et al.: Bounding quantum theory with the exclusivity principle in a two-city experiment (2013). arXiv:1311.3495

  28. Von Neumann, J.: Selected Letters. American Mathematical Society, London Mathematical Society, London (2005)

    MATH  Google Scholar 

  29. Piron, C.: Axiomatique quantique. Helv. Phys. Acta 36, 439–468 (1964)

    MathSciNet  Google Scholar 

  30. Polyakov, A.M.: Conformal symmetry of critical fluctuations. JETP Lett. 12, 381–383 (1970)

    ADS  Google Scholar 

  31. Popescu, S.: Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264–270 (2014)

    Article  Google Scholar 

  32. Popescu, S., Rohrlich, D.: Nonlocality as an axiom for quantum theory. Foundations of Physics 24, 379 (1994). arXiv:quant-ph/9508009

  33. Ryckman, T.: The Reign of Relativity. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  34. Spekkens, R.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75, 032110 (2007). arXiv:quant-ph/0401052

  35. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  36. Weyl, H.: Raum-Zeit-Materie. Springer, Berlin (1918)

    Google Scholar 

  37. Wigner, E.: The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pur. Appl. Math. 13(1), 1–14 (1960)

    Article  MATH  ADS  Google Scholar 

  38. Wittgenstein, L.: Tractatus Logico-Philosophicus. Dover Publications, Mineola (1921/1998)

  39. Zieler, N.: Axioms for non-relativistic quantum mechanics. Pac. J. Math. 11, 1151–1169 (1961)

    Article  Google Scholar 

  40. Zurek, W.: Algorithmic randomness and physical entropy. Phys. Rev. A 40, 4731–4751 (1989a)

    Article  MathSciNet  ADS  Google Scholar 

  41. Zurek, W.: Thermodynamic cost of computation, algorithmic complexity and the information metric. Nature 341, 119–124 (1989b)

    Article  ADS  Google Scholar 

  42. Zurek, W.: Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time. Phys. Scr. T76, 186–198 (1998)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Grinbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinbaum, A. Quantum Theory as a Critical Regime of Language Dynamics. Found Phys 45, 1341–1350 (2015). https://doi.org/10.1007/s10701-015-9937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9937-y

Keywords

Navigation