Foundations of Physics

, Volume 45, Issue 10, pp 1394–1406 | Cite as

Potential Functions and the Characterization of Economics-Based Information

  • Emmanuel HavenEmail author


The formulation of quantum mechanics as a diffusion process by Nelson (Phys Rev 150:1079–1085, 1966) provides for an interesting approach on how we may transit from classical mechanics into quantum mechanics. Besides the presence of the real potential function, another type of potential function (often denoted as ‘quantum potential’) forms an intrinsic part of this theory. In this paper we attempt to show how both types of potential functions can have a use in a resolutely macroscopic context like financial asset pricing. We are particularly interested in uncovering how the ‘quantum potential’ can add to the economics-based relevant information which is already supplied by the real potential function.


Potential functions Information Asset pricing 



The author gratefully acknowledges the study leave support received from the University of Leicester.


  1. 1.
    Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)CrossRefADSGoogle Scholar
  2. 2.
    Paul, W., Baschnagel, J.: Stochastic Processes: From Physics to Finance. Springer, Berlin (1999)zbMATHGoogle Scholar
  3. 3.
    Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40, 322 (1926)zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Holland, P.: Computing the wave function from trajectories: particle and wave pictures in quantum mechanics and their relation. Ann. Phys. 315, 505–531 (2005)zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. Phys. Rev. 85, 166–179 (1952a)zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. Phys. Rev. 85, 180–193 (1952b)CrossRefADSGoogle Scholar
  7. 7.
    Bohm, D., Hiley, B.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)Google Scholar
  8. 8.
    Elbaz, E.: The Quantum Theory of Particles, Fields and Cosmology. Springer, Berlin (1998)zbMATHGoogle Scholar
  9. 9.
    Khrennikov, A.Yu.: Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Found. Phys. 29, 1065–1098 (1999)Google Scholar
  10. 10.
    Segal, W., Segal, I.E.: The Black-Scholes pricing formula in the quantum context. Proc. Natl. Acad. Sci. USA 95, 4072–4075 (1998)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Ishio, H., Haven, E.: Information in asset pricing: a wave function approach. Ann. Phys. (Berlin) 18(1), 33–44 (2009)zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Hawkins, R.J., Frieden, B.R.: Asymmetric information and quantization in financial economics. Int. J. Math. Math. Sci. (2012). doi: 10.1155/2012/470293
  13. 13.
    Haven, E.: Financial payoff functions and potentials. Lect. Notes Comput. Sc. 8951, 189–195 (2015)CrossRefGoogle Scholar
  14. 14.
    Baaquie, B.: Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates. Cambridge University Press, Cambridge (2007)Google Scholar
  15. 15.
    Baaquie, B.: Interest rates in quantum finance: the Wilson expansion. Phys. Rev. E 80, 046119 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Baaquie, B.: Statistical microeconomics. Physica A 392(19), 4400–4416 (2013)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Haven, E., Khrennikov, A.: Quantum-like tunnelling and levels of arbitrage. Int. J. Theor. Phys. 52(11), 4083–4099 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Busemeyer, J., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. J. Math. Psychol. 50, 220–241 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Khrennikov, A., Haven, E.: Quantum mechanics and violations of the sure-thing principle: the use of probability interference and other concepts. J. Math. Psychol. 53, 378–388 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Khrennikova, P., Haven, E., Khrennikov, A.: An application of the theory of open quantum systems to model the dynamics of party governance in the US political system. Int. J. Theor. Phys. 53, 1346–1360 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Khrennikov, A.: Ubiquitous Quantum Structure: From Psychology to Finance. Springer, Berlin (2010)CrossRefGoogle Scholar
  22. 22.
    Haven, E., Khrennikov, A.: Quantum Social Science. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  23. 23.
    Kac, V., Cheung, P.: Quantum Calculus. Springer, Berlin (2000)Google Scholar
  24. 24.
    Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Grow, D., Sanyal, S.: Brownian motion indexed by a time scale. Stoch. Anal. Appl. 29(3), 457–472 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Haven, D.: Itô’s Lemma with quantum calculus: some implications. Found. Phys. 41(3), 529–537 (2010)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)zbMATHCrossRefGoogle Scholar
  28. 28.
    Ma, C.: Advanced Asset Pricing Theory. Imperial College Press, London (2010)Google Scholar
  29. 29.
    Holland, P.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (2004)Google Scholar
  30. 30.
    Haven, E.: The variation of financial arbitrage via the use of an information wave function. Int. J. Theor. Phys. 47, 193–199 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Neftci, S.: An Introduction to the Mathematics of Financial Derivatives. Academic Press, San Diego (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Management, Institute of Finance and IQSCSUniversity of LeicesterLeicesterUK

Personalised recommendations