Integrated Information-Induced Quantum Collapse

Abstract

We present a novel spontaneous collapse model where size is no longer the property of a physical system which determines its rate of collapse. Instead, we argue that the rate of spontaneous localization should depend on a system’s quantum Integrated Information (QII), a novel physical property which describes a system’s capacity to act like a quantum observer. We introduce quantum Integrated Information, present our QII collapse model and briefly explain how it may be experimentally tested against quantum theory.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Adler, S.L.: Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  2. 2.

    Adler, S.L.: Lower and upper bounds on CSL parameters from latent image formation and IGM heating. J. Phys. Math. General 40, 2935–2957 (2007)

    ADS  Article  MATH  Google Scholar 

  3. 3.

    Adler, S.L.: Incorporating gravity into trace dynamics: the induced gravitational action. Class. Quantum Gravity 30(19), 195015 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    Arndt, M., Hornberger, K.: Testing the limits of quantum mechanical superpositions. Nat Phys 10(4), 271–277 (2014)

    Article  Google Scholar 

  5. 5.

    Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Wave particle duality of C60 molecules. Nature 401(6754), 680–682 (1999)

    ADS  Article  Google Scholar 

  6. 6.

    Baars, B.J.A.: Cognitive Theory of Consciousness. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  7. 7.

    Balduzzi, D., Tononi, G. Integrated information in discrete dynamical systems: motivation and theoretical framework (2008). doi:10.1371/journal.pcbi.1000091

  8. 8.

    Balduzzi, D., Tononi, G.: Qualia: the geometry of integrated information. PLoS Comput. Biol. 5, 8 (2009)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Bassett, D.S., Gazzaniga, M.S.: Understanding complexity in the human brain. Trends Cognitive Sci. 15(5), 200–209 (2011)

    Article  Google Scholar 

  10. 10.

    Bassi, A., Dürr, D., Hinrichs, G.: Uniqueness of the equation for quantum state vector collapse. Phys. Rev. Lett. 111(21), 210401 (2013)

    ADS  Article  Google Scholar 

  11. 11.

    Bassi, A., Ghirardi, G.: A general argument against the universal validity of the superposition principle. Phys. Lett. A 275, 373–381 (2000)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  12. 12.

    Bassi, A., Ghirardi, G.: Dynamical reduction models. Phys. Rep. 379, 257–426 (2003)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  13. 13.

    Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  15. 15.

    Cohen, R., Stachel, J.: Potentiality, Entanglement and Passion-at-a-Distance: Quantum Mechanical Studies for Abner Shimony. Boston Studies in the Philosophy and History of Science. Springer, The Netherlands (1997)

    Google Scholar 

  16. 16.

    Das, S., Lochan, K., Bassi, A.: Bounds on Spontaneous Collapse model of Quantum Mechanics from formation of CMBR and Standard Cosmology. ArXiv e-prints (2013)

  17. 17.

    Diósi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40(3), 1165–1174 (1989)

    ADS  Article  Google Scholar 

  18. 18.

    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    MathSciNet  ADS  Article  Google Scholar 

  19. 19.

    Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M., Tuxen, J.: Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu. Phys. Chem. Chem. Phys. 15(35), 14696–14700 (2013)

    Article  Google Scholar 

  20. 20.

    Feldmann, W., Tumulka, R.: Parameter diagrams of the GRW and CSL theories of wavefunction collapse. J. Phys. A Math. General 45(6), 065304 (2012)

    MathSciNet  ADS  Article  Google Scholar 

  21. 21.

    Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., TÃ+xen, J., Mayor, M., Arndt, M.: Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)

    ADS  Article  Google Scholar 

  22. 22.

    Ghirardi, G.C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990)

    MathSciNet  ADS  Article  Google Scholar 

  23. 23.

    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  24. 24.

    Gisin, N.: Stochastic quantum dynamics and relativity. Helv. Phys. Acta 62(4), 363–371 (1989)

    MathSciNet  Google Scholar 

  25. 25.

    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going Beyond Bell’s Theorem. ArXiv e-prints (2007)

  26. 26.

    Lochan, K., Satin, S., Singh, T.P.: Statistical Thermodynamics for a non-commutative special relativity: emergence of a generalized quantum dynamics. Found. Phys. 42, 1556–1572 (2012)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  27. 27.

    Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    MathSciNet  ADS  Article  Google Scholar 

  28. 28.

    Massimini, M., Ferrarelli, F., Esser, S.K., Riedner, B.A., Huber, R., Murphy, M., Peterson, M.J., Tononi, G.: Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci USA 104(20), 8496–8501 (2007)

    ADS  Article  Google Scholar 

  29. 29.

    Metzinger, T.: Being No One: The Self-model Theory of Subjectivity. MIT Press, Cambridge (2003)

    Google Scholar 

  30. 30.

    Nimmrichter, S., Hornberger, K.: Macroscopicity of mechanical quantum superposition states. Phys. Rev. Lett. 110(16), 160403 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    Pearle, P.: Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D 13(4), 857–868 (1976)

    MathSciNet  ADS  Article  Google Scholar 

  32. 32.

    Penrose, R.: On gravity’s role in quantum state reduction. General Relativ. Gravit. 28(5), 581–600 (1996)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  33. 33.

    Romero-Isart, O., Clemente, L., Navau, C., Sanchez, A., Cirac, J.I.: Quantum magnetomechanics with levitating superconducting microspheres. Phys. Rev. Lett. 109, 147205 (2012)

    ADS  Article  Google Scholar 

  34. 34.

    Stapp, H.: Mindful Universe: Quantum Mechanics and the Participating Observer. The Frontiers Collection. Springer, Berlin (2011)

    Google Scholar 

  35. 35.

    Tegmark, M.: Consciousness as a State of Matter (2015). arXiv:1401.1219

  36. 36.

    Tononi, G.: An information integration theory of consciousness. BMC Neurosci. 5(1), 42 (2004)

    Article  Google Scholar 

  37. 37.

    Tononi, G.: Consciousness as integrated information: a provisional manifesto. Biol. Bull. 215(3), 216–242 (2008)

    Article  Google Scholar 

  38. 38.

    von Neumann, J.: The Mathematical Foundations of Quantum Mechanics, 1st edn. Princeton University Press, Princeton (1932)

    Google Scholar 

  39. 39.

    Wigner, E.P.: Remarks on the mind-body question. In: Good, I.J. (ed.) The Scientist Speculates, pp. 284–301. Heinemann, London (1962) (Reprinted in the Collected Works, vol. 6, pp. 247–260)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Ranchin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kremnizer, K., Ranchin, A. Integrated Information-Induced Quantum Collapse. Found Phys 45, 889–899 (2015). https://doi.org/10.1007/s10701-015-9905-6

Download citation

Keywords

  • Spontaneous collapse model
  • Integrated information
  • Quantum measurement
  • Quantum observer
  • Quantum relative entropy