Foundations of Physics

, Volume 45, Issue 9, pp 1063–1100 | Cite as

Two Approaches to Fractional Statistics in the Quantum Hall Effect: Idealizations and the Curious Case of the Anyon

Article

Abstract

This paper looks at the nature of idealizations and representational structures appealed to in the context of the fractional quantum Hall effect, specifically, with respect to the emergence of anyons and fractional statistics. Drawing on an analogy with the Aharonov–Bohm effect, it is suggested that the standard approach to the effects—(what we may call) the topological approach to fractional statistics—relies essentially on problematic idealizations that need to be revised in order for the theory to be explanatory. An alternative geometric approach is outlined and endorsed. Roles for idealizations in science, as well as consequences for the debate revolving around so-called essential idealizations, are discussed.

Keywords

Idealization Approximation Emergence Reduction Aharonov–Bohm effect Quantum Hall effect Anyons Fractional Statistics Representation Explanation 

References

  1. 1.
    Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–91 (1959)MATHMathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Aharonov, Y., Bohm, D.: Remarks on the possibility of quantum electrodynamics without potentials. Phys. Rev. 125, 2192 (1962)MATHMathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Aharonov, Y., Bohm, D.: Further discussion of the role of electromagnetic potentials in the quantum theory. Phys. Rev. 130, 1625 (1963)MATHMathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    Arovas, D.P.: Topics in fractional statistics. In: Shapere, A., Wilczek, F. (eds.) Geometric Phases in Physics. World Scientific, Singapore (1989)Google Scholar
  7. 7.
    Arovas, D., Schrieffer, J.R., Wilczek, F.: Fractional statistics and the Quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    Artin, E.: Theory of braids. Ann. Math. 48(1), 101–126 (1947)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Babiker, M., Loudon, R.: Gauge invariance of the Aharonov–Bohm effect. J. Phys. A 17, 2973–2982 (1984)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)MATHCrossRefGoogle Scholar
  11. 11.
    Ballesteros, M., Weder, R.: The Aharonov–Bohm effect and Tonomura et al.: experiments. Rigorous results. J. Math. Phys. 50, 122108 (2009)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Ballesteros, M., Weder, R.: High-velocity estimates for the scattering operator and Aharonov–Bohm effect in three dimensions. Commun. Math. Phys. 285, 345–398 (2009)MATHMathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Ballesteros, M., Weder, R.: Aharonov–Bohm effect and high-velocity estimates of solutions to the Schrodinger equation. Commun. Math. Phys. 303(1), 175–211 (2011)MATHMathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Batterman, R.: The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction, and Emergence. Oxford University Press, London (2002)Google Scholar
  15. 15.
    Batterman, R.: Falling cats, parallel parking, and polarized light. Stud. Hist. Philos. Mod. Phys. 34, 527–557 (2003)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Batterman, R.: Critical phenomena and breaking drops: infinite idealizations in physics. Stud. Hist. Philos. Mod. Phys. 36B, 225–244 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bransden, B.H., Joachaim, J.C.: Quantum Mechanics. Prentice Hall, New York (2000)Google Scholar
  18. 18.
    Birman, J. S., Brendle, T. E.: Braids: A survey. Available via arXiv:math/0409205 (2005)
  19. 19.
    Belot, G.: Understanding electromagnetism. Br. J. Philos. Sci. 49(4), 531–555 (1998)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Berry, M.V.: The Aharonov-Bohm effect is real physics not ideal physics. In: Gorini, V., Frigerio, A. (eds.) Fundamental Aspects of Quantum Theory, vol. 144, pp. 319–320. Plenum, New York (1986)CrossRefGoogle Scholar
  21. 21.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Lond. A392, 45–57 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    Bokulich, A.: Re-examining the Quantum-Classical Relation: Beyond Reductionism and Pluralism. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  23. 23.
    Born, M., Fock, V.A.: Beweis des Adiabatensatzes. Z. Phys. A 51(3—-4), 165–180 (1928)MATHCrossRefGoogle Scholar
  24. 24.
    Butterfield, J.: Less is different: emergence and reduction reconciled. Found. Phys. 41, 1065–1135 (2011)MATHMathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Callender, C.: Taking thermodynamics too seriously. Stud. Hist. Philos. Mod. Phys. 32(4), 539–553 (2001)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: observation of fractional statistics. Phys. Rev. B 72, 075342 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Canright, G.S., Johnson, M.D.: Fractional statistics: \(\alpha \) to \(\beta \). J. Phys. A Math. Gen. 27, 3579–3598 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Caprez, A., Barwick, B.B., Batelaan, H.: Macroscopic test of the Aharonov–Bohm effect. Phys. Rev. Lett. 99, 210401 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Chakraborty, T., Pietilinen, P.: The Quatnum Hall Effects. Springer, Berlin (1995)CrossRefGoogle Scholar
  30. 30.
    Chambers, R.G.: Shift of an electron interference pattern by enclosed magnetic flux. Phys. l Rev. Lett. 5, 3–5 (1960)ADSCrossRefGoogle Scholar
  31. 31.
    Chen, Y.R., Wilczek, F., Witten, E., Halperin, B.I.: On anyon superconductivity. Int. J. Mod. Phys. B 3, 1001 (1989)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    de Oliveira, C.R., Pereira, M.: Mathematical justification of the Aharonov–Bohm hamiltonion. J. Stat. Phys. 133, 1175–1184 (2008)MATHMathSciNetADSCrossRefGoogle Scholar
  33. 33.
    de Oliveira, C.R., Pereira, M.: Scattering and Self-adjoint extensions of the Aharonov–Bohm Hamiltonian. J. Phys. A 43, 1–29 (2010)CrossRefGoogle Scholar
  34. 34.
    de Oliveira, C.R., Pereira, M.: Impenetrability of Aharonov–Bohm solenoids: proof of norm resolvent convergence. Lett. Math. Phys. 95, 41–51 (2011)MATHMathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Douçot, B., Pasquier, V., Duplantier, B., Rivasseau, V. (eds.): The Quantum Hall Effect Poincaré Seminar. Birkhäuser, Berlin (2004)Google Scholar
  36. 36.
    Dresden, M.: The existence and significance of parastatistics. In: Hayakawa, H. (ed.) Lectures on astrophysics and weak interactions, pp. 377–469. Brandeis University, Waltham (1964)Google Scholar
  37. 37.
    Duck, I., Sudarshan, E.C.G. (eds.): Pauli and the sping-statistics theorem. World Scientific, Singapore (1997)Google Scholar
  38. 38.
    Ehrenberg, W., Siday, R.W.: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. Lond. B62, 8–21 (1949)ADSCrossRefGoogle Scholar
  39. 39.
    Earman, J.: Curie’s principle and spontaneous symmetry breaking. Int. Stud. Philos. Sci. 18(2–3), 173–198 (2004)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Earman, J.: J. Understanding permutation invariance in quantum mechanics. Unpublished preprint (2010)Google Scholar
  41. 41.
    Ezawa, Z.F.: Quantum Hall Effects. World Scientific, Singapore (2013)CrossRefGoogle Scholar
  42. 42.
    Fadell, E., Neuwirth, L.: Configuration spaces. Math. Scand. 10, 111–118 (1962)MATHMathSciNetGoogle Scholar
  43. 43.
    Fox, R., Neuwirth, L.: The Braid groups. Math Scand. 10, 119–126 (1962)MATHMathSciNetGoogle Scholar
  44. 44.
    Griffiths, D.J.: Introduction to Quantum Mechanics. Pearson Prentice Hall, New Jersey (2005)Google Scholar
  45. 45.
    Haldane, F.D.M.: Fractional quantization of the hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605 (1983)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Halperin, B.I.: Statistics of quasiparticles and the hierarchy of fractional quantized hall states. Phys. Rev. Lett. 52, 1583–1586 (1984)ADSCrossRefGoogle Scholar
  47. 47.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  48. 48.
    Healey, R.: Nonlocality and the Aharonov–Bohm effect. Philos. Sci. 64, 18–41 (1997)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Healey, R.: On the reality of gauge potentials. Philos. Sci. 68(4), 432–455 (2001)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Healey, R.A.: Gaugin What’s Real: The Conceptual Foundatinos of Contemporary Gauge Theories. Oxford University Press, New York (2007)CrossRefGoogle Scholar
  51. 51.
    Huang, W.-H.: Boson–Fermion Transmutation and the Statistics of Anyons. Available via arXiv:hep-th/0308095
  52. 52.
    Jackiw, R.: Dynamical symmetry of the magnetic vortex. Ann. Phys. 201, 83–116 (1990)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Jackiw, R., Tempelton, S.: How super-renormalizable interactions cure their infrared divergences. Phys. Rev. D 23, 2291 (1981)ADSCrossRefGoogle Scholar
  54. 54.
    Jones, N. J.: Ineliminable Idealizations, Phase Transitions and Irreversibility. Dissertation, Ohio State University (2006)Google Scholar
  55. 55.
    Kaplan, I.G.: Symmetry of many-particle systems. In: Bonchev, D., Rouvray, D.H. (eds.) Chemical Group Theory: Introduction and Fundamentals, pp. 209–254. Gordon and Breach Science Publishers, Amsterdam (1994)Google Scholar
  56. 56.
    Katanaev, M.O.: On geometric interpretation of the Aharonov–Bohm effect. Russ. Phys. J. 54(5), 507–514 (2011)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Katanaev, M.O.: On geometric interpretation of the Berry phase. Russ. Phys. J. 54(10), 1082–1092 (2012)MATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Khare, A.: Fractional Statistics and Quantum Theory. World Scientific, Singapore (2005)MATHCrossRefGoogle Scholar
  59. 59.
    Kitzing, K.V., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized hall. Phys. Rev. Lett. 45, 494 (1980)ADSCrossRefGoogle Scholar
  60. 60.
    Klitzing, K.V.: 25 Years of quantum hall effect (QHE): a personal view on the discovery, physica and application of this quantum effect. In: Douçot, B., Pasquier, V., Duplantier, B., Rivasseau, V. (eds.) he Quantum Hall Effect Poincaré Seminar, vol. 45, pp. 1–23. Birkhäuser, Basel, Berlin (2004)Google Scholar
  61. 61.
    Kretzschmar, M.: Aharonov-Bohm scattering of a wave packet of finite extension. Z. Phys. 185, 84–96 (1965)MATHADSCrossRefGoogle Scholar
  62. 62.
    Laidlaw, M.G., DeWitt, C.M.: Feyman functional integrals for system of indistinguishable particles. Phys. Rev. D 3, 1375–1378 (1971)ADSCrossRefGoogle Scholar
  63. 63.
    Landsman, N. P.: Quantization and superselection sectors III: multiply connected spaces and indistinguishable particles. Available via arXiv:1302.3637 (2013)
  64. 64.
    Laughlin, R.B.: Quantized motion of three two-dimensional electrons in a strong magnetic field. Phys. Rev. B 27, 3383–3389 (1983)ADSCrossRefGoogle Scholar
  65. 65.
    Laughlin, R.B.: Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)ADSCrossRefGoogle Scholar
  66. 66.
    Laughlin, R.B.: Fractional statistics in the quantum hall effect. In: Wilczek, F. (ed.) Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore (1990)Google Scholar
  67. 67.
    Leeds, S.: Gauges: Aharonov, Bohm, Yang, Healey. Philos. Sci. 66, 606–627 (1999)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Leinaas, J.M., Myrheim, J.: On the theory of identical particles. Nuovo Cimento B 37, 1–23 (1977)ADSCrossRefGoogle Scholar
  69. 69.
    Lerda, A.: Anyons: Quantum Mechanics of Particles with Fractional Statistics. Springer, Berlin (1992)MATHGoogle Scholar
  70. 70.
    Lyre, H.: The principles of gauging. Philos. Sci. 68(3), S371–S381 (2001)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Lyre, H.: Holism and structuralism in U(1) Gauge Theory. Stud. Hist. Philos. Mod. Phys. 35, 643–670 (2004)MATHMathSciNetCrossRefGoogle Scholar
  72. 72.
    Magni, C., Valz-Gris, F.: Can elementary quantum mechanics explain the Aharonov–Bohm effect? J. Math. Phys. 36(1), 177–186 (1995)MATHMathSciNetADSCrossRefGoogle Scholar
  73. 73.
    Mattingly, J.: Which gauge matters. Stud. Hist. Philos. Mod. Phys. 37, 243–262 (2006)MATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    Maudlin, T.: Discussion: healey on the Aharonov–Bohm effect. Philos. Sci. 65, 361–368 (1998)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Messiah, A.M., Greenberg, O.W.: Symmetrization postulate and its experimental foundation. Phys. Rev. B 136, 248–267 (1964)MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    Morandi, G.: The Role of Topology in Classical and Quantum Mechanics. Springer, Berlin (1992)Google Scholar
  77. 77.
    Morandi, G., Menossie, E.: Path-integrals in multiply connected spaces and the Aharonov–Bohm effect. Eur. J. Phys. 5, 49–58 (1984)CrossRefGoogle Scholar
  78. 78.
    Morrison, M.: Emergence, reduction and theoretical principles: rethinking fundamentalism. Philos. Sci. 73, 876–887 (2006)CrossRefGoogle Scholar
  79. 79.
    Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)MATHGoogle Scholar
  81. 81.
    Nakhara, M.: Geometry. Topology and Physics. Institute of Physics Publishing, Bristol (1990)CrossRefGoogle Scholar
  82. 82.
    Nash, C., Sen, S.: Topology and Geometry for Physicists. Academic, New York (1983)MATHGoogle Scholar
  83. 83.
    Nayak, C., Simon, S., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys 80, 1083 (2008)MATHMathSciNetADSCrossRefGoogle Scholar
  84. 84.
    Norton, J.D.: Approximations and idealizations: why the difference matters. Philos. Sci. 79, 207–232 (2012)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Nounou, A.M.: A fourth way to the Aharonov–Bohm effect. In: Bradind, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Replections. Cambridge University Press, Cambridge (2003)Google Scholar
  86. 86.
    Pachos, J.K.: Introduction to Topological Quantum Computation. Cambridge University Press, Cambridge (2012)MATHCrossRefGoogle Scholar
  87. 87.
    Pauli, W.: The connection between spin and statistics. Phys. Rev. 58, 716–722 (1940)ADSCrossRefGoogle Scholar
  88. 88.
    Peshkin, M., Tonomura, A.: The Aharonov–Bohm Effect. Lecture Notes in Physics, vol. 340. Springer, Berlin (1989)CrossRefGoogle Scholar
  89. 89.
    Prange, R.E., Girvin, S. (eds.): The Quantum Hall Effect. Springer, New York (1987)Google Scholar
  90. 90.
    Rao, S.: An Anyon Primer. Available via arXiv:hep-th/9209066 (2001)
  91. 91.
    Roy, S.M.: Condition for nonexistence of Aharonov–Bohm effect. Phys. Rev. Lett. 44, 111–114 (1980)MathSciNetADSCrossRefGoogle Scholar
  92. 92.
    Ruetsche, L.: Interpreting Quantum Theories: The Art of the Possible. Oxford University Press, Oxford (2011)CrossRefGoogle Scholar
  93. 93.
    Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1996)MATHCrossRefGoogle Scholar
  94. 94.
    Schulman, L.: A path integral for spin. Phys. Rev. 176, 1558–1569 (1971)MathSciNetADSCrossRefGoogle Scholar
  95. 95.
    Shapere, A., Wilczek, F. (eds.): Geometric Phases in Physics. World Scientific, Singapore (1989)MATHGoogle Scholar
  96. 96.
    Shech, E.: Scientific misrepresentation and guides to ontology: the need for representational code and contents. Synthese. (2014). doi:10.1007/s11229-014-0506-2
  97. 97.
    Shech, E.: Assume a Spherical Cow: Studies on Representation and Idealizations. Doctoral Dissertation. University of Pittsburgh, Pittsburgh (2015)Google Scholar
  98. 98.
    Shech, E.: What is the paradox of phase transitions? Philos. Sci. 80, 1170–1181 (2013)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Shrivastava, K.N.: Quantum Hall Effect: Expressions. Nova Science Publishers, New York (2005)Google Scholar
  100. 100.
    Stern, A.: Anyons and the quantum hall effect-a pedagogical review. Ann. Phys. 323, 204–249 (2008)MATHADSCrossRefGoogle Scholar
  101. 101.
    Tonomura, A.: Electron Holography. Springer, Berlin (1999)MATHCrossRefGoogle Scholar
  102. 102.
    Tonomura, A.: The AB effect and its expanding applications. J. Phys. A 43, 1–13 (2010)CrossRefGoogle Scholar
  103. 103.
    Tonomura, A., Osakabe, N., Matsuda, T., Kawasaki, T., Endo, J., Yano, S., Yamada, H.: Observation of the Aharonov–Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443 (1982)ADSCrossRefGoogle Scholar
  104. 104.
    Tonomura, A., Osakabe, N., Matsuda, T., Kawasaki, T., Endo, J., Yano, S., Yamada, H.: Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986)ADSCrossRefGoogle Scholar
  105. 105.
    Tsui, D.C., Stormer, H.L., Gossard, A.C.: Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48(22), 1559 (1982)ADSCrossRefGoogle Scholar
  106. 106.
    Weisskopf, V.F. In: Brittin, W.E. (ed.) Lectures in Theoretical Physics, vol. III, pp. 67–70. Interscience, New York (1961)Google Scholar
  107. 107.
    Wilczek, F.: Magnetic flux, angular momentum and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982)MathSciNetADSCrossRefGoogle Scholar
  108. 108.
    Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982)MathSciNetADSCrossRefGoogle Scholar
  109. 109.
    Wilczek, F. (ed.): Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore (1990)Google Scholar
  110. 110.
    Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)MathSciNetADSCrossRefGoogle Scholar
  111. 111.
    Wu, Y.S.: General theory for quantum statistics in two dimensions. Phys. Rev. Lett. 52, 2103–2106 (1984)MathSciNetADSCrossRefGoogle Scholar
  112. 112.
    Wu, T.T., Yang, C.N.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845 (1975)MathSciNetADSCrossRefGoogle Scholar
  113. 113.
    Yoshioka, D.: Quantum Hall Effect. Springer, Berlin (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of PittsburghPittsburghUSA
  2. 2.Auburn UniversityAuburnUSA

Personalised recommendations