Foundations of Physics

, Volume 45, Issue 6, pp 673–690 | Cite as

Open Systems’ Density Matrix Properties in a Time Coarsened Formalism

  • Robert Englman
  • Asher YahalomEmail author


The concept of time-coarsened density matrix for open systems has frequently featured in equilibrium and non-equilibrium statistical mechanics, without being probed as to the detailed consequences of the time averaging procedure. In this work we introduce and prove the need for a selective and non-uniform time-sampling, whose form depends on the properties (whether thermalized or not) of the bath. It is also applicable when an open microscopic sub-system is coupled to another finite system. By use of a time-periodic minimal coupling model between these two systems, we present detailed quantitative consequences of time coarsening, which include initial state independence of equilibration, deviations from long term averages, their environment size dependence and the approach to classicality, as measured by a Leggett–Garg type inequality. An interacting multiple qubit model affords comparison between the time integrating procedure and the more conventional environment tracing method.


Foundations of quantum mechanics Density matrix  Time coarsened formalism 



Thanks are due to Rafael Ruppin for substantial help in the calculations and to Ronnie Kosloff for a discussion. The article has benefited from the constructive comments of two referees, who also called our attention to several important references.


  1. 1.
    Deutsch, J.M.: Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Srednicki, M.: Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994)CrossRefADSGoogle Scholar
  3. 3.
    Tasaki, H.: From quantum mechanics to the canonical distribution: general picture and a rigorous example. Phys. Rev. Lett. 80, 1373–1376 (1998)CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Rigol, M., Dunjko, V., Olshani, M.: Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Popescu, S., Short, A.J., and Winter, A.: Entanglement and the foundations of statistical mechanics, Nature Phys. 2, 754–758 (2006); arXiv:quant-phys/0511225
  6. 6.
    Linden, N., Popescu, S., Short, A.J., Winter, A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. A 79(061103), 1–12 (2009)MathSciNetGoogle Scholar
  7. 7.
    Sirker J., Konstantinidis, N.P., Andrashko, F., and Sedlmayer N.: Localization and thermalization in closed quantum mechanical systems. arXiv:1303.3064v3 [cond-mat, stat-mech], pp. 1–10, 3 Nov, 2013
  8. 8.
    Ududec, C., Wiebe, N., Emerson, J.: Information theoretical equilibration: the appearance of irreversibility under complex quantum mechanics. Phys. Rev. Lett. 111(080403), 1–5 (2013)Google Scholar
  9. 9.
    Giraldi, F., Petruccione, F.: Survival of coherence for open quantum systems in thermal baths. Phys. Rev. A 88(042102), 1–7 (2013)Google Scholar
  10. 10.
    Reimann, P., Evstigneev, M.: On the foundation of Statistical Mechanics under experimentally realistic conditions: A comparison between the quantum and the classical case. arXiv:1311.2732v1 [cond-mat.stat-mech], pp. 1–13, 12 Nov, 2013
  11. 11.
    Ebling U., Krauser, J.S., Fläschner, N. et al.: Relaxation dynamics of a closed high-spin Fermi system far from equilibrium. ArXiv:1312.6704 [cond-mat.quan-phys], pp. 1–18, 23 Dec, 2013
  12. 12.
    Steinigeweg, R., Khodja, A., Niemeyer, H., Gogolin, G., Gemmer, J.: Pushing the limits of the eigenvalue thermalization hypothesis towards mesoscopic quantum systems. Phys. Rev. Lett. 112(130403), 1–5 (2014)Google Scholar
  13. 13.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Englman, R., Yahalom, A.: Partial decoherence and thermalization through time domain ergodicity. Phys. Rev. A 87(052123), 1–9 (2013)Google Scholar
  15. 15.
    Farquhar, I.E.: Theory, ergodic. In: Statistical Mechanics: Interscience. Wiley, London. Chapter 2 (1964)Google Scholar
  16. 16.
    Falasco, G., Saggiorato, G., and Vulpiani, A.: About the role of chaos and coarse graining in Statistical Mechanics. arXiv:1405.2823v1 [cond-mat.stat-mech], pp. 1–16, 12 May, 2014
  17. 17.
    Autler, S., Townes, C.H.: Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955)CrossRefADSGoogle Scholar
  18. 18.
    Shirley, J.H.: Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979–B987 (1965)CrossRefADSGoogle Scholar
  19. 19.
    Shevchenko, S.N., Ashhab, S., Nori, N.: Landau–Zener–Stückelberg interferometry. Phys. Rept. 492, 1–30 (2010)CrossRefADSGoogle Scholar
  20. 20.
    Zhang, J.-N., Sung, C.-P., Yu, S., Nori, F.: Spatial Landau–Zener–Stückelberg interference in spinor Bose–Einstein condensates. Phys. Rev. A 83(033614), 1–7 (2011)Google Scholar
  21. 21.
    Shevchenko, S.N., Ashhab, S., Nori, F.: Inverse Landau–Zener–Stückelberg problem for qubit-resonator system. Phys. Rev. B 85(094502), 1–10 (2012)Google Scholar
  22. 22.
    Sun, Z., Ma, J., Wang, X., Nori, F.: Photon-assisted Landau–Zener transition: role of coherent superposition states. Phys. Rev. A 86(012107), 1–7 (2012)Google Scholar
  23. 23.
    Ganeshan, S., Barnes, E., Das Sarma, S.: Exact classification of Landau–Majorana–Stückelberg–Zener resonances by Floquet determinants. Phys. Rev. Lett. 111, 130405,1–5 (2013)CrossRefADSGoogle Scholar
  24. 24.
    Navon, G., Kotler, S., Akerman, N., Glickman, Y., et al.: Addressing two-level systems variably coupled to an oscillating field. Phys. Rev. Lett. 111(073001), 1–5 (2013)Google Scholar
  25. 25.
    Satanin, A.M., Denisenko, M.V., Ashhab, S., Nori, F.: Amplitude spectroscopy of two coupled qubits. Phys. Rev. B 85(184524), 1–8 (2012)Google Scholar
  26. 26.
    Fano, U.: Description of state in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29, 74–93 (1957)CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    Goldstein, S., Hara T. and Tasaki, H.: On the time scales in the approach to equilibrium of macroscopic quantum systems. arXiv: 1307.0572v2 [cond-mat.stat-mech], pp. 1–5, 5 Sep, 2013
  28. 28.
    Kubo, R., Toyozawa, Y.: Application of the method of generating functions to radiative and non-radiative transitions of trapped electrons in a crystal. Progr. Theor. Phys. 13, 161–182 (1955)CrossRefADSGoogle Scholar
  29. 29.
    Irish, E.K., Gea-Banacloche, J., Martin, I., Schwab, K.C.: Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator. Phys. Rev. B 72(195410), 1–14 (2005)Google Scholar
  30. 30.
    Lanting, T., Przybysz, A.J., Smirnov, A.Y., Spedalieri, F.M., et al.: Entanglement in a quantum annealing processort. Phys. Rev. X 4, 02104.1-14 (2014)Google Scholar
  31. 31.
    Beugeling, W., Moessner, R., Haque, M.: Finite size scaling of eigensate thermalization. Phys. Rev. E 89(042112), 1–9 (2014)Google Scholar
  32. 32.
    Alba, V.: Eigenstate thermalization hypothesis (ETH) and integrability in quantum spin chains. arXiv:1409.6096v1 [cond-mat. str-el], pp. 1–6, 22 Sep, 2014
  33. 33.
    Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985)CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Emary, C., Lambert, N., and Nori, F.: Leggett–garg inequalities. Rep. Prog. Phys. 77, 016001–016025 (2014); arXiv: 1304.5133v3[quant-phys]
  35. 35.
    Huelga, S.F., Marshall, T.W., Santos, E.: Temporal Bell-type inequalities for two-level Rydberg atoms coupled to a high-Q reservoir. Phys. Rev. A 54, 1798–1807 (1996)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Waldherr, G., Neumann, P., Huelga, S.F., Jelezko, F., Wrachtrup, J.: Variation of a temporal Bell inequality for single spins in a diamond defect center. Phys. Rev. Lett. 107(090401), 1–4 (2011)Google Scholar
  37. 37.
    Miranowicz, A., Bartowiak, M., Wang, X., Liu, Y.-X., Nori, F.: Testing nonclassicality in multimode fields: a unified derivation of classical inequalities. Phys. Rev. A 82(013824), 1–14 (2010)Google Scholar
  38. 38.
    Lambert, N., Emary, C., Chen, Y.-N., Nori, F.: Distinguishing quantum and classical transport through nanostructures. Phys. Rev. Lett. 105(176801), 1–4 (2010)Google Scholar
  39. 39.
    Lambert, N., Chen, Y.-N., Nori, F.: Macrorealism inequality for optoelectromechanical systems. Phys. Rev. A 84(245421), 1–4 (2011)Google Scholar
  40. 40.
    Emary, C., Lambert, N., Nori, F.: Leggett-Garg inequality in electron interferometers. Phys. Rev. 86(235447), 1–10 (2012)Google Scholar
  41. 41.
    Leggett, A., Chakravarty, S., Dorsey, A., Fisher, M., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)CrossRefADSGoogle Scholar
  42. 42.
    Rechtman, P., Penrose, O.: Continuity of the temperature and derivation of the Gibbs canonical distribution in classical statistical mechanics. J. Stat. Phys. 19, 359–366 (1978)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Soreq NRCYavneIsrael
  2. 2.Ariel UniversityArielIsrael

Personalised recommendations