Skip to main content
Log in

On the Gyromagnetic and Gyrogravito-Magnetic Ratios of the Electron

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The magnetic dipole moment of the Kerr–Newman metric, defined by mass \(M\), electrical charge \(Q\) and angular momentum \(J\), is \(\mu =QJ/M\), corresponding, for all values of \(J/M\), to a gyromagnetic ratio \(g_1=2\), which is also the value of the intrinsic gyromagnetic ratio of the electron, as first noted by Carter. Here, we argue that this result can be understood in terms of the particle-wave complementarity principle. For \(\mu \) can only be defined at asymptotic spatial infinity, where the metric appears to describe a spinning point particle, and therefore setting \(M=m\), \(Q=e\), we necessarily have a model of the electron. From the Dirac equation  we can construct a covariantly conserved four-current \(J_i\) that is the source of the electromagnetic  field generated by the charge \(e\). The result \(g_1=2\) then follows from the minimal gauge principle \(\partial _j\rightarrow \partial _j -\mathrm {i}e A_j\) which is implicit in the formulation of the spinorial wave equation, and which can also be justified from the line action for a spin-1/2 point particle interacting with an external electromagnetic  field, due to Berezin and Marinov. By contrast, analysis of the gyrogravito-magnetic effect, investigated classically by Wald and quantum mechanically by Adler et al., yields the result \(\tilde{g}=1\) in all non-relativistic cases, which can be explained from the principle of equivalence. The results are in accord with the correspondence principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A117, 610–624 (1928)

    Article  ADS  Google Scholar 

  2. Dirac, P.A.M.: The quantum theory of the electron. Part II. Proc. R. Soc. Lond. A118, 351–361 (1928)

    Article  ADS  Google Scholar 

  3. Uhlenbeck, G.E., Goudsmit, S.: Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Naturwissenschaften 47, 953–954 (1925)

    ADS  Google Scholar 

  4. Uhlenbeck, G.E., Goudsmit, S.: Spinning electrons and the structure of spectra. Nature 117, 264–265 (1926)

    Article  ADS  Google Scholar 

  5. Heisenberg, W., Jordan, P.: Anwendung der Quantenmechanik auf das Problem der anomalen Zeemaneffekte. Z. Phys. 37, 263–277 (1926)

    Article  ADS  MATH  Google Scholar 

  6. Compton, A.H.: The magnetic electron. J. Frankl. Inst. 192, 145–155 (1921)

    Article  Google Scholar 

  7. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  ADS  MATH  Google Scholar 

  8. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ernst, F.J.: New formulation of the axially symmetric gravitational field problem. II. Phys. Rev. 168, 1415–1417 (1968)

    Article  ADS  Google Scholar 

  11. Debney, G.C., Kerr, R.P., Schild, A.: Solutions of the Einstein and Einstein-Maxwell equations. J. Math. Phys. 10, 1842–1854 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bender, D., et al.: Tests of QED at 29 GeV center-of-mass energy. Phys. Rev. D 30, 515–527 (1984)

    Article  ADS  Google Scholar 

  13. Penrose, R.: Gravitational collapse: the role of general relativity. Rivista del Nuovo Cimento (Numero Speciale) I , 252–276 (1969)

    ADS  Google Scholar 

  14. Einstein, A.: Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine Wesenttiche Rolle? Sitz. Preuss. Akad. Wiss., Berlin 349–356 (1919)

  15. Abraham, M.: Die Grundhypothesen der Elektronentheorie. Phys. Z. 5, 576–579 (1904)

    MATH  Google Scholar 

  16. Poincaré, H.: Sur la dynamique de l’électron. Rendiconti del Circolo Matematico di Palermo 21, 129–176 (1906)

    Article  MATH  Google Scholar 

  17. Lorentz, H.A.: The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat, 2nd edn. Teubner, Leipzig (1916)

    Google Scholar 

  18. O’Brien, S., Synge, J.L.: Jump Conditions at Discontinuities in General Relativity, No. 9. Communications of the Dublin Institute for Advanced Studies Series A, Dublin (1952)

  19. Israel, W.: Source of the Kerr Metric. Phys. Rev. D 2, 641–646 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitz. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. 24, 418–428 (1930)

  21. Pollock, M.D.: On the Dirac equation in curved space-time. Acta Phys. Pol. B 41, 1827–1846 (2010)

    MathSciNet  Google Scholar 

  22. Pauli Jr, W.: Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 43, 601–623 (1927)

    Article  ADS  MATH  Google Scholar 

  23. Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29–36 (1950)

    Article  ADS  MATH  Google Scholar 

  24. Becker, R.: Die aus der Dirac-Gleichung des Elektrons folgende Zwei-Komponenten-Gleichung. Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. 39–47 (1945)

  25. O’Raifeartaigh, L.: The Dawning of Gauge Theory. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  26. Huang, K.: On the Zitterbewegung of the Dirac electron. Am. J. Phys. 20, 479–484 (1952)

    Article  ADS  MATH  Google Scholar 

  27. Proca, A.: Mécanique du point. J. Phys. Radium 15, 65–72 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Phys. 79, 361–376 (1926)

    Article  MATH  Google Scholar 

  29. Gordon, W.: Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Phys. 40, 117–133 (1926)

    Article  ADS  MATH  Google Scholar 

  30. Møller, C.: The Theory of Relativity, 2nd edn. Clarendon Press, Oxford (1972)

    Google Scholar 

  31. Pollock, M.D.: On the gravito-electromagnetic analogy. Acta Phys. Pol. B 42, 1767–1796 (2011)

    Article  Google Scholar 

  32. Pollock, M.D.: On gravitational effects in the Schrödinger equation. Found. Phys. 44, 368–388 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Adler, R.J., Chen, P.: Gravitomagnetism in quantum mechanics. Phys. Rev. D 82, 025004 (2010)

    Article  ADS  Google Scholar 

  34. De Donder, Th.: La gravifique einsteinienne. Ann. de l’Obs. Royal de Belgique, 3. sér., t. I, Bruxelles: M. Hayez, 73–268 (1922); Premiers compléments de la gravifique einsteinienne 317–355 (1922)

  35. Lanczos, K.: Ein vereinfachendes Koordinatensystem für die Einsteinschen Gravitationsgleichungen. Phys. Z. 23, 537–539 (1922)

    MATH  Google Scholar 

  36. Lancius, K.: Zur Theorie der Einsteinschen Gravitationsgleichungen. Z. Phys. 13, 7–16 (1923)

    Article  ADS  MATH  Google Scholar 

  37. Fock, V.: The Theory of Space, Time and Gravitation, 2, revised edn. Pergamon Press, Oxford (1964)

    Google Scholar 

  38. Fock, V.: Geometrisierung der Diracschen Theorie des Elektrons. Z. Phys. 57, 261–277 (1929)

    Article  ADS  MATH  Google Scholar 

  39. Schrödinger, E.: Diracsches Elektron im Schwerefeld. I. Sitz. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. 105–128 (1932)

  40. Hehl, F.W., Ni, W.-T.: Inertial effects of a Dirac particle. Phys. Rev. D42, 2045–2048 (1990)

    ADS  Google Scholar 

  41. Adler, R.J., Chen, P., Varani, E.: Gravitomagnetism and spinor quantum mechanics. Phys. Rev. D 85, 025016 (2012)

    Article  ADS  Google Scholar 

  42. Berezin, F.A., Marinov, M.S.: Classical spin and Grassmann algebra. Pis’ma ZhETF 21, 678–680 (1975). (JETP Lett. 21, 320–321 (1975))

    ADS  Google Scholar 

  43. Berezin, F.A., Marinov, M.S.: Particle spin dynamics as the Grassmann variant of classical mechanics. Ann. Phys. (New York) 104, 336–362 (1977)

    Article  ADS  MATH  Google Scholar 

  44. Barducci, A., Casalbuoni, R., Lusanna, L.: Supersymmetries and the pseudoclassical relativistic electron. Nuovo Cimento A35, 377–399 (1976)

    Article  ADS  Google Scholar 

  45. Brink, L., Di Vecchia, P., Howe, P.: A Lagrangian formulation of the classical and quantum dynamics of spinning particles. Nucl. Phys. B 118, 76–94 (1977)

    Article  ADS  Google Scholar 

  46. Balachandran, A.P., Salomonson, P., Skagerstam, B.S., Winnberg, J.-O.: Classical description of a particle interacting with a non-Abelian gauge field. Phys. Rev. D 15, 2308–2317 (1977)

    Article  ADS  Google Scholar 

  47. Gitman, D. M.: Pseudoclassical Theory of a Relativistic Spinning Particle. In: R. L. Dobrushin et al. (ed) Topics in Statistical and Theoretical Physics, vol. 177, pp. 83–104. F. A. Berezin Memorial Volume. Adv. Math. Sci. Ser. 2, Providence, RI (1996)

  48. Klishevich, S., Plyushchay, M.: Zitterbewegung and reduction: 4D spinning particles and 3D anyons on light-like curves. Phys. Lett. B 459, 201–207 (1999)

    Article  ADS  Google Scholar 

  49. Wald, R.M.: Gravitational spin interaction. Phys. Rev. D 6, 406–413 (1972)

    Article  ADS  Google Scholar 

  50. Beiglböck, W.: The center-of-mass in Einstein’s theory of gravitation. Commun. Math. Phys. 5, 106–130 (1967)

    Article  ADS  MATH  Google Scholar 

  51. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

  52. Zelmanov, A.L.: Chronometric invariants and frames of reference in the general theory of relativity. Dokl. Akad. Nauk SSSR 107, 815–818. (Sov. Phys. Dokl. 1, 227–229 (1956))

Download references

Acknowledgments

This paper was written at the University of Cambridge, Cambridge, England.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Pollock.

Appendices

Appendix 1: The Probability-Current Conservation Law for the Schrödinger  Equation

In paper II, we derived the probability-current continuity equation for the Schrödinger equation (II 25), assuming the De Donder [34]–Lanczos [35, 36] gauge condition (84), in the chronometrically invariant  form given by Eq. (II 29),

$$\begin{aligned} ^{*}\partial _t\rho _\mathrm{P} + {^{*}\varvec{\partial }} \centerdot {^{*}{\varvec{j}}_\mathrm{P}} = 0, \end{aligned}$$
(161)

where

$$\begin{aligned} ^{*}\partial _t=\frac{1}{\sqrt{h}}\partial _0 ,\quad \partial _{\alpha } = {^{*}\partial _{\alpha }} +g_{\alpha }\partial _0 \end{aligned}$$
(162)

and the probability density \(\rho _\mathrm{P}\) and three-vector current \(^{*}{\varvec{j}}_\mathrm{P}\) are defined by Eqs. (II 30), now assuming a total electrical charge \(ne\),

$$\begin{aligned} \rho _\mathrm{P} =\psi \psi ^{*},\quad ^{*}{\varvec{j}}_\mathrm{P} =\frac{\mathrm {i}}{2{{\mathcal {M}}}} \left[ \psi \left( ^{*}\varvec{\partial }\psi ^{*}\right) - \left( ^{*}\varvec{\partial }\psi \right) \psi ^{*}\right] -\frac{ne}{{\mathcal {M}}}\psi \psi ^{*} {\varvec{A}}'. \end{aligned}$$
(163)

As in paper II, a pre-star \(^{(*\dots )}\) denotes chronometric invariance, discussed by Zel’manov [52] (see also paper I), a post-star \(^{(\dots *)}\) denotes complex conjugation, and the three-vector \({\varvec{A}}'\) is defined from the four-vector potential \(A_i\) by

$$\begin{aligned} \left( {\varvec{A}}'\right) ^{\alpha } = -A^{\alpha },\quad \left( {\varvec{A}}'\right) _{\alpha } = \gamma _{\alpha \beta } \left( {\varvec{A}}'\right) ^{\beta }. \end{aligned}$$
(164)

Setting \(n=2\), we obtain the theory of superconductivity describing a Cooper pair of electrons.

Here, we also assume that the background  space-time  is stationary

$$\begin{aligned} \partial _0 g_{ij} = 0, \end{aligned}$$
(165)

in which case the electromagnetic  Lorenz gauge condition

$$\begin{aligned} \partial _j\left( \sqrt{-g} A^j\right) = 0 \end{aligned}$$
(166)

reduces in three dimensions to

$$\begin{aligned} \text {div} \left( \sqrt{h} {\varvec{A}}'\right) = 0. \end{aligned}$$
(167)

The purpose of this Appendix is to elucidate the meaning of Eq. (161) as the normal four-vector conservation law expressed in coordinate  form,

$$\begin{aligned} \partial _l \left( \sqrt{-g} g^{lm} j_m \right) = 0, \end{aligned}$$
(168)

where the components  \((j_0,j_{\alpha })\) of the four-current \(j_m\) are to be determined in terms of the chronometrically invariant  components  \((\rho _\mathrm{p},(j_\mathrm{p})_{\alpha })\). In the gauge (84), Eq. (168) reduces to

$$\begin{aligned} g^{00} \partial _{0} j_0 +\left( g^{\alpha \beta } \partial _{\alpha }j_{\beta } + g^{0\alpha } \partial _{0} j_{\alpha } \right) + g^{0\alpha } \partial _{\alpha }j_{0} = 0. \end{aligned}$$
(169)

Remembering that \(g^{00} =h^{-1} - g_{\alpha }g^{\alpha }\), \(g^{\alpha \beta } =-\gamma ^{\alpha \beta }\) and \(g^{0\alpha }=-g^{\alpha }\), and retaining only terms up to first order in \({\varvec{g}}\), we thus have

$$\begin{aligned} h^{-1} \partial _{0} j_0 -\gamma ^{\alpha \beta *} \partial _{\alpha }j_{\beta } - g^{\alpha } \partial _{\alpha }j_{0} \approx 0. \end{aligned}$$
(170)

Comparing Eqs. (161) and (170), we see that it is possible to identify \(\rho _\mathrm{p}\) with \(j_0/\sqrt{h}\), assuming Eq. (165), while \(^*{\varvec{j}}_\mathrm{p}\) is of the form

$$\begin{aligned} ^*{\varvec{j}}_\mathrm{p} =-{\varvec{j}} -\zeta {\varvec{g}}j_0. \end{aligned}$$
(171)

The second term in Eq. (161) can then be expanded, to first order in \({\varvec{g}}\), as

$$\begin{aligned} \gamma ^{\alpha \beta *} \partial _{\alpha }\left( ^*{\varvec{j}}_\mathrm{p}\right) _{\beta }= & {} -\gamma ^{\alpha \beta *} \partial _{\alpha } j_{\beta } -\zeta \gamma ^{\alpha \beta *} \partial _{\alpha }\left( g_{\beta } j_0\right) \nonumber \\\approx & {} -\gamma ^{\alpha \beta *} \partial _{\alpha } j_{\beta } -\zeta \gamma ^{\alpha \beta } \left( \partial _{\alpha } g_{\beta }\right) j_0 -\zeta g^{\alpha } \partial _{\alpha } j_0. \end{aligned}$$
(172)

To proceed further, we note that the second term on the right-hand side  of Eq. (172) vanishes in the stationary space-time  (165) when the coordinate  condition (84) is applied. For we have

$$\begin{aligned} \gamma ^{\alpha \beta } \partial _{\alpha }g_{\beta }= & {} \partial _{\alpha } g^{\alpha } -\left( \partial _{\alpha } \gamma ^{\alpha \beta } \right) g_{\beta } = -\frac{1}{\sqrt{-g}} \partial _j \left( \sqrt{-g} g^{0j}\right) - \frac{1}{\sqrt{-g}} g^{\alpha } \partial _{\alpha } \left( \sqrt{-g}\right) \nonumber \\&\quad - \left( \partial _{a} \gamma ^{\alpha \beta } \right) g_{\beta } \nonumber \\= & {} -\frac{1}{\sqrt{-g}} g_{\alpha } \partial _{\beta } \left( \sqrt{-g}\gamma ^{\alpha \beta }\right) =0. \end{aligned}$$
(173)

Substitution  of Eqs. (172) and (173) into Eq. (161) yields the equation

$$\begin{aligned} \partial _0\left( \frac{1}{\sqrt{h}} \rho _\mathrm{p} \right) -\gamma ^{\alpha \beta *} \partial _{\alpha } j_{\beta } -\zeta g^{\alpha } \partial _{\alpha } j_0 \approx 0, \end{aligned}$$
(174)

comparison of which with Eq. (170) shows that \(\zeta =1\), so that the components  of the four-current \(j_i\) are given by

$$\begin{aligned} j_0=\sqrt{h} \rho _\mathrm{p} =\sqrt{h}\psi \psi ^* \end{aligned}$$
(175)

and

$$\begin{aligned} {\varvec{j}}=-^*{\varvec{j}}_\mathrm{p} - {\varvec{g}}j_0 = \frac{\mathrm {i}}{2{{\mathcal {M}}}} \left[ \left( {^*\varvec{\partial }} \psi \right) \psi ^{*} - \psi \left( {^*\varvec{\partial }} \psi ^{*} \right) \right] + \psi \psi ^{*} \left( \frac{ne}{{\mathcal {M}}} {\varvec{A}}'- \tilde{{\varvec{A}}}\right) .\quad \end{aligned}$$
(176)

Note in particular the minus sign in the bracket \(\left( \frac{ne}{{\mathcal {M}}}{\varvec{A}}'-\tilde{{\varvec{A}}}\right) \) in the second term on the right-hand side  of Eq. (176), which is due to the combination of classical and quantum effects involved in the calculation, and is in contrast with the expectation of a plus sign, based on the purely classical substitution  rule defined by Eq. (79).

Mathematically, there is a sign ambiguity of \(\pm \mathrm {i}^*\partial _t\) in taking the square root of Eq. (86) [Eq. (II.16)] to obtain the Schrödinger equation  (II 25), and if instead of choosing \(+ \mathrm {i}^*\partial _t\), corresponding to the positive-energy solution (II 25), we were to choose \(- \mathrm {i}^*\partial _t\), corresponding to the negative-energy solution, then we would find that

$$\begin{aligned} j_0=\sqrt{h} \rho _\mathrm{p} =-\sqrt{h}\psi \psi ^* \end{aligned}$$
(177)

and

$$\begin{aligned} {\varvec{j}}=-^*{\varvec{j}}_\mathrm{p} - {\varvec{g}}j_0 = \frac{\mathrm {i}}{2{{\mathcal {M}}}} \left[ \left( {^*\varvec{\partial }} \psi \right) \psi ^{*} - \psi \left( {^*\varvec{\partial }} \psi ^{*} \right) \right] + \psi \psi ^{*} \left( \frac{ne{\varvec{A}}'}{{\mathcal {M}}} + \tilde{o}ver \mathbf{{A}}\right) .\quad \end{aligned}$$
(178)

Appendix 2: The Term \(-\mathrm {i}\kappa zF_{lm}\xi ^l\xi ^m\) in the Lagrangian (114)

Here we shall clarify the nature of the term \(-\mathrm {i}\kappa zF_{lm}\xi ^l\xi ^m\) in the Lagrangian (114) describing the pseudo-classical electron. The canonical momentum (118) can be written

$$\begin{aligned} p_j=\frac{\partial {L}}{\partial {\dot{x}^j}} =-m^{\prime \prime }u_j -\frac{1}{2}\mathrm {i}\left( \xi _j-u_l\xi ^lu_j\right) \lambda '/z + e A_j, \end{aligned}$$
(179)

contraction of which with \(\xi ^j\) yields the equation

$$\begin{aligned} P_j\xi ^j =-m^{\prime \prime }u_j \xi ^j, \end{aligned}$$
(180)

where

$$\begin{aligned} m^{\prime \prime } = m + \mathrm {i}\kappa F_{lm}\xi ^l\xi ^m \end{aligned}$$
(181)

and

$$\begin{aligned} P_j=p_j - eA_j. \end{aligned}$$
(182)

Substituting from Eq. (180) into the constraint Eq. (116), we obtain

$$\begin{aligned} P_j \xi ^j + m^{\prime \prime } \xi _5 = 0. \end{aligned}$$
(183)

Writing the action \(S\) in the Hamiltonian  form (125) and assuming the semi-classical approximation (63) for the wave function,

$$\begin{aligned} \psi =\exp {\left( \mathrm {i}{S}\right) }, \end{aligned}$$
(184)

we make the operator replacements (127) and promote the classical constraint (183) into a quantum constraint acting on \(\psi \). Simultaneously transforming the Grassmann algebra (113) into the Clifford algebra via Eqs. (131), taking into account Eq. (119) for the quantity \(p_j\dot{x}^j\), we obtain the modified Dirac equation, after premultiplication by \(\gamma _5\),

$$\begin{aligned} \left[ \mathrm {i}\gamma ^j \left( \partial _j - \mathrm {i}e A_j\right) - m^{\prime \prime \prime } \right] \psi =0, \end{aligned}$$
(185)

where the effective mass is defined by

$$\begin{aligned} m^{\prime \prime \prime } = m -\mathrm {i}\kappa F_{lm} {s}^{lm}. \end{aligned}$$
(186)

Equation (185) is the form of the Dirac equation  resulting from an initial Lagrangian  function that includes the anomalous Pauli term \(-\frac{1}{2}\mathrm {i}l_0 F_{lm} {s}^{lm}\bar{\psi }\psi \), where \(l_0=-2\kappa \), which reads

$$\begin{aligned} L=\mathrm {i}\bar{\psi } \gamma ^j\left( \partial _j -\mathrm {i}e A_j\right) \psi - m^{\prime \prime \prime } \bar{\psi }\psi . \end{aligned}$$
(187)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pollock, M.D. On the Gyromagnetic and Gyrogravito-Magnetic Ratios of the Electron. Found Phys 45, 611–643 (2015). https://doi.org/10.1007/s10701-015-9887-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9887-4

Keywords

Navigation