Foundations of Physics

, Volume 45, Issue 5, pp 507–524 | Cite as

Klein Paradox for the Bosonic Equation in the Presence of Minimal Length

Article

Abstract

We present an exact solution of the one-dimensional modified Klein Gordon and Duffin Kemmer Petiau (for spins 0 and 1) equations with a step potential in the presence of minimal length in the uncertainty relation, where the expressions of the new transmission and reflection coefficients are determined for all cases. As an application, the Klein paradox in the presence of minimal length is discussed for all equations.

Keywords

Klein Paradox Klein Gordon Duffin Kemmer Petiau equations Minimal length 

References

  1. 1.
    Veneziano, G.: A stringy nature needs just two constants. Europhys. Lett. 2, 199–204 (1986)CrossRefADSGoogle Scholar
  2. 2.
    Amati, D., Ciafaloni, M., Veneziano, G.: Superstring collisions at planckian energies. Phys. Lett. B 197, 81–88 (1987)CrossRefADSGoogle Scholar
  3. 3.
    Konishi, K., Paffuti, G., Provero, P.: Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B 234, 276–284 (1990)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Kato, M.: Particle theories with minimum observable length and open string theory. Phys. Lett. B 245, 43–47 (1990)CrossRefADSGoogle Scholar
  5. 5.
    Guida, R., Konishi, K., Provero, P.: On the short distance behavior of string theories. Mod. Phys. Lett. A 6, 1487–1504 (1991)CrossRefADSGoogle Scholar
  6. 6.
    Gross, D.J., Mende, P.F.: String theory beyond the planck scale. Nucl. Phys. B 303, 407–454 (1988)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Garay, L.J.: Models of neutrino masses and mixings. Int. J. Mod. Phys. A 10, 145–166 (1995)CrossRefADSGoogle Scholar
  8. 8.
    Capozziello, S., Lambiase, G., Scarpetta, G.: Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 39, 15–22 (2000)Google Scholar
  9. 9.
    Scardigli, F.: Generalized uncertainty principle in quantum gravity from micro-black hole. Phys. Lett. B 452, 39–44 (1999)CrossRefADSGoogle Scholar
  10. 10.
    Scardigli, F., Casadio, R.: Generalized uncertainty principle, extra dimensions and holography. Class. Quant. Grav. 20, 3915–3926 (2003)CrossRefADSMATHMathSciNetGoogle Scholar
  11. 11.
    Kempf, A.: Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483–4496 (1994)CrossRefADSMATHMathSciNetGoogle Scholar
  12. 12.
    Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Kempf, A.: Non-pointlike particles in harmonic oscillators. J. Phys. A: Math. Gen. 30, 2093–2102 (1997)CrossRefADSMATHMathSciNetGoogle Scholar
  14. 14.
    Hinrichsen, H., Kempf, A.: Maximal localization in the presence of minimal uncertainties in positions and in momenta. J. Math. Phys. 37, 2121–2137 (1996)CrossRefADSMATHMathSciNetGoogle Scholar
  15. 15.
    Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65, 125027–125035 (2002)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Benczik, S., Chang, L.N., Minic, D., Okamura, N., Rayyan, S., Takeuchi, T.: Short distance versus long distance physics: the classical limit of the minimal length uncertainty relation. Phys. Rev. D 66, 026003–026014 (2002)CrossRefADSGoogle Scholar
  17. 17.
    Nozari, K., Azizi, T.: Quantum mechanical coherent states of the harmonic oscillator and the generalized uncertainty principle. Int. J. Quant. Inf. 3, 623–632 (2005)Google Scholar
  18. 18.
    Nozari, K.: Some aspects of planck scale quantum optics. Phys. Lett. B 629, 41–52 (2005)CrossRefADSMATHMathSciNetGoogle Scholar
  19. 19.
    Spector, D.: Minimal length uncertainty relations and new shape invariant models. J. Math. Phys. 49, 082101–082109 (2008)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Kempf, A.: Non-pointlike particles in harmonic oscillators. J. Phys. A 30, 2093–2101 (1997)CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    Slawny, J.: Bound states of hydrogen atom in a theory with minimal length uncertainty relations. J. Math. Phys. 48, 053515–053534 (2007)Google Scholar
  22. 22.
    Nouicer, Kh: Coulomb potential in one dimension with minimal length: a path integral approach. J. Math. Phys. 48, 112104–112115 (2007)Google Scholar
  23. 23.
    Brau, F.: Minimal length uncertainty relation and hydrogen atom. J. Phys. A 32, 7691–7696 (1999)CrossRefADSMATHMathSciNetGoogle Scholar
  24. 24.
    Akhoury, R., Yao, Y-P. Minimal length uncertainty relation and the hydrogen spectrum. Phys. Lett. B 37, 572–577 (2003)Google Scholar
  25. 25.
    Benczik, S., Chang, L.N., Minic, D., Takeuchi, T.: Hydrogen-atom spectrum under a minimal-length hypothesis. Phys. Rev. A 72, 012104–012108 (2005)CrossRefADSGoogle Scholar
  26. 26.
    Bouaziz, D., Bawin, M.: Regularization of the singular inverse square potential in quantum mechanics with a minimal length. Phys. Rev. A 76, 032112–032142 (2007)CrossRefADSGoogle Scholar
  27. 27.
    Nozari, K., Azizi, T.: Some aspects of gravitational quantum mechanics. Gen. Rel. Grav. 38, 735–742 (2006)CrossRefADSMATHMathSciNetGoogle Scholar
  28. 28.
    Nouicer, Kh: Pauli-Hamiltonian in the presence of minimal lengths. J. Math. Phys. 47, 122102–122113 (2006)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Merad, M., Falek, F.: The time-dependent linear potential in the presence of a minimal length. Phys. Scr. 79, 015010–015016 (2009)CrossRefADSGoogle Scholar
  30. 30.
    Nozari, K., Karami, M.: Minimal length and generalized Dirac equation Mod. Mod. Phys. Lett. A 20, 3095–3104 (2005)CrossRefADSMATHMathSciNetGoogle Scholar
  31. 31.
    Sadeghi, J.: Dirac oscillator with minimal lengths and free particle on AdS2 and S2. J. Math. Phys. 48, 113508–113518 (2007)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Quesne, C., Tkachuk, V.M.: Dirac oscillator with nonzero minimal uncertainty in position. J. Phys. A: Math. Gen. 38, 1747–1766 (2005)CrossRefADSMATHMathSciNetGoogle Scholar
  33. 33.
    Nouicer, K.: An exact solution of the one-dimensional Dirac oscillator in the presence of minimal lengths. J. Phys. A: Math. Gen. 39, 5125–5134 (2006)CrossRefADSMATHMathSciNetGoogle Scholar
  34. 34.
    Merad, M., Zeroual, F., Falek, M.: Relativistic particle in electromagnetic fields with a generalized uncertainty principle. Mod. Phys. Lett. A 27, 1250080–1250092 (2012)CrossRefADSGoogle Scholar
  35. 35.
    Falek, M., Merad, M.: Bosonic oscillator in the presence of minimal length. J. Math. Phys. 50, 023508–023517 (2009)Google Scholar
  36. 36.
    Falek, M., Merad, M.: Ageneralized bosonic oscillator in the presence of a minimal length. J. Math. Phys. 51, 033516–033531 (2010)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Klein, O.: Die reflexion von Elektronen an Einem Potentialsprung Nach der Relativistischen Dynamik von Dirac. Physics 53, 157–165 (1929)CrossRefMATHGoogle Scholar
  38. 38.
    Thomson, M.J., McKellar, B.H.J. The solution of the Dirac equation for high squre barrier. Am. J. Phys. 59, 340–346 (1991)Google Scholar
  39. 39.
    Hai, H., Xing-Qiu, F., Rong-Sheng, H.: KleinParadox of two-dimensional Dirac electronsin circular well potential. Commun. Theor. Phys. 58, 205–208 (2012)CrossRefADSMATHGoogle Scholar
  40. 40.
    Guang-Jiong, N., Hong, G., Wei-Min, Z., Jun, Y.: Antiparticle in light of Einstein-Podolsky-Rosen Paradox and Klein Paradox Chinese. Phys. Lett. 17, 393–395 (2000)Google Scholar
  41. 41.
    Ghose, P., Samal, M.K., Datta, A.: Klein paradox for bosons. Phys. Lett. A 315, 23–27 (2003)CrossRefADSMATHMathSciNetGoogle Scholar
  42. 42.
    Cardoso, T.R., Castro, L.B., de Castro, A.S.: Inconsistencies of a purported probability current in the Duffin–Kemmer–Petiau theory. Phys. Lett. A 372, 5964–5967 (2008)CrossRefADSMATHMathSciNetGoogle Scholar
  43. 43.
    Ghosh, S.: Generalized uncertainty principle, modified dispersion relation and barrier penetration by a dirac particle. Int. J. Theor. Phys. 54, 736–748 (2014)CrossRefGoogle Scholar
  44. 44.
    Ali, A.F., Das, S., Vagenas, E.C.: Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 678, 497–499 (2009)CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Xiang, L., Shen, Y.G.: About the generalized uncertainty principle. Mod. Phys. Lett. A 19, 1767–1780 (2004)Google Scholar
  46. 46.
    Nozari, K., Karami, M.: Minimal length and generalized Dirac equation. Mod. Phys. Lett. A 20, 3095–3104 (2005)CrossRefADSMATHMathSciNetGoogle Scholar
  47. 47.
    Hossenfelder, S.: Interpretation of quantum field theories with a minimal length scale. Phys. Rev. D 73, 105013–105020 (2006)CrossRefADSGoogle Scholar
  48. 48.
    Nedjadi, Y., Barrett, R.C.: The Duffin-Kemmer-Petiau oscillator. J. Phys. A: Math. Gen. 27, 4301–4315 (1994)CrossRefADSMATHMathSciNetGoogle Scholar
  49. 49.
    Nedjadi, Y., Barrett, R.C.: A generalized Duffin-Kemmer-Petiau oscillator. J. Phys. A: Math. Gen. 31, 6717–6724 (1998)CrossRefADSMATHMathSciNetGoogle Scholar
  50. 50.
    Nedjadi, Y., Ait-Tahar, S., Barrett, R.C.: An extended relativistic quantum oscillator for particles. J. Phys. A: Math. Gen. 31, 3867–3874 (1998)Google Scholar
  51. 51.
    Duffin, R.Y.: On the characteristic matrices of covariant systems. Phys. Rev. 54, 1114–1114 (1938)CrossRefADSGoogle Scholar
  52. 52.
    Kemmer, N.: Proc R Soc Lond Ser A (Mathematical and Physical Sciences) 173, 91 (1939)Google Scholar
  53. 53.
    Merad, M.: DKP equation with smooth potential and position-dependent mass. Int. J. Theor. Phys. 46, 2105–2118 (2007)CrossRefMATHGoogle Scholar
  54. 54.
    Merad, M., Bada, H., Lecheheb, A.: DKP particle in time-dependent field. Czech. J. Phys. 56, 765–775 (2006)CrossRefADSGoogle Scholar
  55. 55.
    Merad, M., Bensaid, S.: Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential. J. Math. Phys. 48, 073515–073520 (2007)CrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Boztosun, I., Karakoc, M., Yasuk, F., Durmus, A.: Asymptotic iteration method solutions to the relativistic Duffin-Kemmer-Petiau equation. J. Math. Phys. 47, 062301–062318 (2006)Google Scholar
  57. 57.
    Eftekharzadeh, A., Hu, B.L.: The classical and commutative limits of noncommutative quantum mechanics: a superstar bigstar Wigner-Moyal equation. Braz. J. Phys. 35, 333–342 (2005)Google Scholar
  58. 58.
    Mirza, B., Mohadesi, M.: The Klein-Gordon and the dirac oscillators in a noncommutative space. Commun. Theor. Phys. 42, 664–668 (2004)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    Chetouani, L., Merad, M., Boudjedaa, T., Lecheheb, A.: Non-commutative green function for two components relativistic equation. Acta. Phys. Slov. 55, 379–386 (2005)Google Scholar
  60. 60.
    Falek, M., Merad, M.: DKP oscillator in a noncommutative space. Commun. Theor. Phys. 50, 587–592 (2008)Google Scholar
  61. 61.
    Guertin, R., Wilson, T.L.: Noncausal propagation in spin-0 theories with external field interactions. Phys. Rev. D 15, 1518–1531 (1977)CrossRefADSGoogle Scholar
  62. 62.
    Falek, M., Merad, M.: Duffin-Kemmer-Petiau equation in Robertson-Walker space-time. Cent. Eur. J. Phys. 8, 408–414 (2010)CrossRefGoogle Scholar
  63. 63.
    Chetouani, L., Merad, M., Boudjedaa, T., Lecheheb, A.: Solution of Duffin-Kemmer-Petiau equation for the step potential. Int. J. Theor. Phys. 43, 1147–1159 (2004)CrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    Nedjadi, Y., Barrett, R.C.: The Duffin-Kemmer-Petiau oscillator. J. Math. Phys. 35, 4517–4533 (1994)CrossRefADSMATHMathSciNetGoogle Scholar
  65. 65.
    de Leo, S., Rotelli, P.: Antiparticle creation in tunneling. Int. J. Mod. Phys. A 28, 1350129–1350138 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratoire (L.S.D.C), Faculté des Sciences ExactesUniversité de Oum El BouaghiOum El BouaghiAlgeria
  2. 2.Département des Sciences de la Matière, Faculté des Sciences Exactes & S.N.VUniversité de BiskraBiskraAlgeria

Personalised recommendations