Foundations of Physics

, Volume 45, Issue 5, pp 507–524

Klein Paradox for the Bosonic Equation in the Presence of Minimal Length

Article

DOI: 10.1007/s10701-015-9880-y

Cite this article as:
Falek, M., Merad, M. & Moumni, M. Found Phys (2015) 45: 507. doi:10.1007/s10701-015-9880-y

Abstract

We present an exact solution of the one-dimensional modified Klein Gordon and Duffin Kemmer Petiau (for spins 0 and 1) equations with a step potential in the presence of minimal length in the uncertainty relation, where the expressions of the new transmission and reflection coefficients are determined for all cases. As an application, the Klein paradox in the presence of minimal length is discussed for all equations.

Keywords

Klein Paradox Klein Gordon Duffin Kemmer Petiau equations Minimal length 

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratoire (L.S.D.C), Faculté des Sciences ExactesUniversité de Oum El BouaghiOum El BouaghiAlgeria
  2. 2.Département des Sciences de la Matière, Faculté des Sciences Exactes & S.N.VUniversité de BiskraBiskraAlgeria

Personalised recommendations