Foundations of Physics

, Volume 45, Issue 4, pp 461–470 | Cite as

The Black Hole Information Paradox and the Collapse of the Wave Function

Article

Abstract

The black hole information paradox arises from an apparent conflict between the Hawking black hole radiation and the fact that time evolution in quantum mechanics is unitary. The trouble is that while the former suggests that information of a system falling into a black hole disappears, the latter implies that information must be conserved. In this work we discuss the current divergence in views regarding the paradox, we evaluate the role that objective collapse theories could play in its resolution and we propose a link between spontaneous collapse events and microscopic virtual black holes.

Keywords

Black holes Information loss paradox Objetive collapse models 

References

  1. 1.
    Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Wald, R.: Gravitational collapse and cosmic censorship (1997, preprint). arXiv:gr-qc/9710068
  3. 3.
    Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? J High Energy Phys. (2013). doi:10.1007/JHEP02(2013)062
  4. 4.
    Braunstein, S. L.: Black hole entropy as entropy of entanglement or it’s curtains for the equivalence principle (2009, preprint). arXiv:0907.1190v1 [quant-ph]
  5. 5.
    Braunstein, S.L., Pirandola, S., Zyczkowski, K.: Better late than never: information retrieval from black holes. Phys. Rev. Lett. 110(101301), 5 (2013)Google Scholar
  6. 6.
    Ghirardi, G.: Collapse theories. In: Zalta, E. N. (ed.) The stanford encyclopedia ofphilosophy, winter 2011 edn. (2011)Google Scholar
  7. 7.
    Pearle, P.: How stands collapse I. J. Phys. A 40, 3189–3204 (2007)CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Modak,S. K., Ortíz, L., Peña, I., Sudarsky, D.:Black holes: information loss but no paradox (2014, preprint). arXiv:1406.4898
  9. 9.
    Modak, S. K., Ortíz, L., Peña, I., Sudarsky, D.: Non-paradoxical loss of information in black hole evaporation (2014, preprint). arXiv:1408.3062 [gr-qc]
  10. 10.
    Unruh, W.G., Wald, R.M.: On evolution laws taking pure states tomixed states in quantum field theory. Phys. Rev. D 52, 2176–2182 (1995)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Bedingham, D.: Relativistic state reduction model. J. Phys. 306, 1–7 (2011)Google Scholar
  12. 12.
    Bassi, A., Lochan, K., Satin, S., Singh, T., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471 (2013)CrossRefADSGoogle Scholar
  13. 13.
    Pearle, P., Squires, E.: Bound-state excitation, nucleaon decay experiments, and models of wave-function collapse. Phys. Rev. Lett. 73, 1–5 (1994)CrossRefADSGoogle Scholar
  14. 14.
    Penrose, R.: The Road to Reality. Knopf, New York (2004)Google Scholar
  15. 15.
    Hawking, S.: Quantum black holes. In: Hawking, S., Penrose, R. (eds.) The Nature of Space and Time, pp. 37–60. Princeton University Press, Princeton (2000)Google Scholar
  16. 16.
    Lunin, O., Mathur, S.D.: Ads/cft duality and the black hole information paradox. Nucl. Phys. B 623, 342–394 (2002)CrossRefADSMATHMathSciNetGoogle Scholar
  17. 17.
    Fidkowski, L., Hubeny, V., Kleban, M., Shenker, S.: The black hole singularity in ads/cft. JHEP 0402, 014 (2004)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Ashtekar, A., Taveras, V., Varadarajan, M.: Information is not lost in the evaporation of 2-dimensional black holes. Phys. Rev. Lett. 100, 211302 (2008)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Instituto de Investigaciones FilosóficasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations