Foundations of Physics

, Volume 45, Issue 4, pp 439–460 | Cite as

Failure and Uses of Jaynes’ Principle of Transformation Groups

Article

Abstract

Bertand’s paradox is a fundamental problem in probability that casts doubt on the applicability of the indifference principle by showing that it may yield contradictory results, depending on the meaning assigned to “randomness”. Jaynes claimed that symmetry requirements (the principle of transformation groups) solve the paradox by selecting a unique solution to the problem. I show that this is not the case and that every variant obtained from the principle of indifference can also be obtained from Jaynes’ principle of transformation groups. This is because the same symmetries can be mathematically implemented in different ways, depending on the procedure of random selection that one uses. I describe a simple experiment that supports a result from symmetry arguments, but the solution is different from Jaynes’. Jaynes’ method is thus best seen as a tool to obtain probability distributions when the principle of indifference is inconvenient, but it cannot resolve ambiguities inherent in the use of that principle and still depends on explicitly defining the selection procedure.

Keywords

Probability Bertrand’s paradox Principle of indifference  Principle of transformation groups Jaynes 

References

  1. 1.
    Sklar, L.: Physics and Chance—Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  2. 2.
    Keynes, J.M.: A Treatise on Probability. Macmillan, London (1921/1963)Google Scholar
  3. 3.
    Bertrand, J.L.F.: Calcul des Probabilités, pp. 4–5. Gauthier-Villars, Paris (1889)MATHGoogle Scholar
  4. 4.
    Northrop, E.P.: Riddles in Mathematics: A Book of Paradoxes. Van Nostrand, New York (1944)Google Scholar
  5. 5.
    Garwood, F., Holroyd, E.M.: The distance of a “random chord” of circle from the centre. Math. Gazette 50(373), 283–286 (1966)CrossRefMATHGoogle Scholar
  6. 6.
    Tissier, P.E.: Bertrand’s paradox. Math. Gazette 68(443), 15–19 (1984)CrossRefMATHGoogle Scholar
  7. 7.
    van Fraassen, B.: Laws and Symmetry. Clarendon Press, Oxford (1989)CrossRefGoogle Scholar
  8. 8.
    Gillies, D.: Philosophical Theories of Probability. Routledge, London (2000)Google Scholar
  9. 9.
    Bangu, S.: On Bertrand’s paradox. Analysis 70(1), 30–35 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Rowbottom, D.P., Shackel, N.: Bangu’s random thoughts on Bertrand’s paradox. Analysis 70(4), 689–692 (2010)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Marinoff, L.: A resolution of Bertrand’s paradox. Philos. Sci. 61, 1–24 (1994)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Shackel, N.: Bertrand’s paradox and the principle of indifference. Philos. Sci. 74, 150–175 (2007)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Poincaré, H.: Calcul des Probabilités. Gauthier-Villars, Paris (1912)MATHGoogle Scholar
  14. 14.
    Jaynes, E.T.: The well-posed problem. Found. Phys. 3, 477–493 (1973)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Holbrook, J., Kim, S.S.: Bertrand’s paradox revisited. Math. Intell. 22, 16–19 (2000)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Di Porto, P., Crosignani, B., Ciattoni, A. and Liu, H. C.: Bertrand’s Paradox: A Physical Solution. arXiv:1008.1878 [physics.data-an] (2010)
  17. 17.
    Di Porto, P., Crosignani, B., Ciattoni, A., Liu, H.C.: Bertrand’s paradox: a physical way out along the lines of Buffon’s needle throwing experiment. Eur. J. Phys. 32, 819–825 (2011)CrossRefGoogle Scholar
  18. 18.
    Wang, J.: Bertrand’s paradox and distribution of lines. Proceeding of DSI Annual Conference, Baltimore, pp. 3031–3036 (2008)Google Scholar
  19. 19.
    Wang, J., Jackson, R.: Resolving Bertrand’s probability paradox. Int. J. Open Probl. Comput. Sci. Math. 4(3), 72–103 (2011)MathSciNetGoogle Scholar
  20. 20.
    Weisstein, E.W.: “Bertrand’s Problem”. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/BertrandsProblem.html. Accessed 01 Dec 2014
  21. 21.
    Rowbottom, D.P.: Bertrand’s paradox revisited: Why Bertrand’s “solutions” are all inapplicable. Philos. Math. 21, 110–114 (2013)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Chiu, S.S., Larson, R.C.: Bertrand’s paradox revisited: more lessons about that ambiguous word, random. J. Ind. Sys. Eng. 3, 1–26 (2009)Google Scholar
  23. 23.
    Drory, A.: Bertrand’s paradox: why physical “solutions” fail (in preparation)Google Scholar
  24. 24.
    Aerts, D., Sassoli de Bianchi, M: Solving the hard problem of Bertrand’s paradox. J. Math. Phys. 55, 083503 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Afeka College of EngineeringTel-AvivIsrael

Personalised recommendations