Foundations of Physics

, Volume 45, Issue 4, pp 355–369 | Cite as

Structures of Three Types of Local Quantum Channels Based on Quantum Correlations

  • Zhihua GuoEmail author
  • Huaixin Cao
  • Shixian Qu


In a bipartite quantum system, quantum states are classified as classically correlated (CC) and quantum correlated (QC) states, the later are important resources of quantum information and computation protocols. Since correlations of quantum states may vary under a quantum channel, it is necessary to explore the influence of quantum channels on correlations of quantum states. In this paper, we discuss CC-preserving, QC-breaking and strongly CC-preserving local quantum channels of the form \(\Phi _1\otimes \Phi _2\) and obtain the structures of these three types of local quantum channels. Moreover, we obtain a necessary and sufficient condition for a quantum state to be transformed into a CC state by a specific local channel \(\Phi _1\otimes \Phi _2\) in terms of the structure of the input quantum state. Lastly, as applications of the obtained results, we present a classification of local quantum channels \(\Phi _1\otimes \Phi _2\) and describe the quantum states which are transformed as CC ones by the corresponding local quantum channel.


Structure Local quantum channel Classical correlation  Quantum correlation 



The authors would like to thank the referee for his/her kind comments and valuable suggestions. This research was partially supported by the National Natural Science Foundation of China (11401359, 11371012, 11301318, 11471200), China Postdoctoral Science Foundation (2014M552405), the Natural Science Research Program of Shaanxi Province (2014JQ1010) and Postdoctoral Science Foundation of Shaanxi Province.


  1. 1.
    Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)CrossRefADSGoogle Scholar
  2. 2.
    Dagomir, K., Aditi, S., Ujjwal, S., Vlatko, V., Andreas, W.: Quantum correlation without classical correlations. Phys. Rev. Lett. 101, 070502 (2008)CrossRefGoogle Scholar
  3. 3.
    Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acin, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)CrossRefADSGoogle Scholar
  6. 6.
    Aharon, B., Kavan, M.: Criteria for measures of quantum correlations. Quantum. Inf. Comput. 12, 721–742 (2011)Google Scholar
  7. 7.
    Guo, Z.H., Cao, H.X., Chen, Z.L.: Distinguishing classical correlations from quantum correlations. J. Phys. A: Math. Theor. 45, 145301 (2012)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Wu, Y.C., Guo, G.C.: Norm-based measurement of quantum correlation. Phys. Rev. A 83, 062301 (2011)CrossRefADSGoogle Scholar
  9. 9.
    Zhou, T., Cui, J.X., Long, G.L.: Measure of nonclassical correlation in coherence- vector representation. Phys. Rev. A 84, 062105 (2011)CrossRefADSGoogle Scholar
  10. 10.
    Guo, Z.H., Cao, H.X.: A classification of correlations of tripartite mixed states. Int. J. Theor. Phys. 52, 1768–1779 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Guo, Z.H., Cao, H.X., Qu, S.X.: Partial correlations in multipartite quantum systems. Information Sciences 289, 262–272 (2014)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Streltsov, A., Kampermann, H., Bruß, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)CrossRefADSGoogle Scholar
  13. 13.
    Gessner, M., Laine, E., Breuer, H., Piilo, J.: Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012)CrossRefADSGoogle Scholar
  14. 14.
    Hu, X.M., Fan, H., Zhou, D.L., Liu, W.M.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)CrossRefADSGoogle Scholar
  15. 15.
    Guo, Y., Hou, J.C.: Necessary and sufficient conditions for the local creation of quantum discord. J. Phys. A: Math. Theor. 46, 155301 (2013)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Guo, Z.H., Cao, H.X.: Local quantum channels preserving classical correlations. J. Phys. A: Math. Theor. 46, 065303 (2013)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Korbicz, J.K., Horodecki, P., Horodecki, R.: Quantum-correlation breaking channels, broadcasting scenarios, and finite Markov chains. Phys. Rev. A 86, 042319 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15, 629 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Moravcíková, L., Ziman, M.: Entanglement-annihilating and entanglement-breaking channels. J. Phys. A: Math. Theor. 43, 275306 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina
  2. 2.College of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations