Skip to main content
Log in

Timelines and Quantum Time Operators

  • Original Paper
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The failure of conventional quantum theory to recognize time as an observable and to admit time operators is addressed. Instead of focusing on the existence of a time operator for a given Hamiltonian, we emphasize the role of the Hamiltonian as the generator of translations in time to construct time states. Taken together, these states constitute what we call a timeline. Such timelines are adequate for the representation of any physical state, and appear to exist even for the semi-bounded and discrete Hamiltonian systems ruled out by Pauli’s theorem. However, the step from a timeline to a valid time operator requires additional assumptions that are not always met. Still, this approach illuminates the issues surrounding the construction of time operators, and establishes timelines as legitimate alternatives to the familiar coordinate and momentum bases of standard quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pauli, W.: Pauli in Handbuch der Physik, vol. 24, p. 83. Springer, Berlin (1933)

    Google Scholar 

  2. Muga, J.G., Mayato, R.S., Egusquiza, I.L. (eds.): Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734, 2nd ed. Springer, Berlin (2008)

  3. Muga, J.G., Ruschhaupt, A., del Campo, A.: Time in Quantum Mechanics, vol. 2. Lecture Notes in Physics, vol. 789. Springer, Berlin (2009)

  4. Srinivas, M.D., Vijayalakshmi, R.: The time of occurrence in quantum mechanics. Pramana 16, 173 (1981)

    Article  ADS  Google Scholar 

  5. de la Madrid, R.: arXiv:0502053v1 for a very readable account of ‘rigged’ Hilbert spaces and their usefulness in quantum mechanics, (2014)

  6. Kijowski, J.: On the time operator in quantum mechanics and the Heisenberg uncertainty relation for energy and time. Rep. Math. Phys. 6, 362 (1974)

  7. Pegg, D.T.: Complement of the Hamiltonian. Phys. Rev. A 58, 4307 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Olver, P.J.: Introduction to Partial Differential Equations, pp. 97–98. University of Minnesota, Minneapolis (2010)

  9. Merzbacher, E.: Quantum Mechanics, 2nd edn. Wiley, New York (1970)

    Google Scholar 

  10. Helstrom, C.W.: Quantum Detection and Estimation Theory, pp. 53–80. Academic Press, New York (1976)

    MATH  Google Scholar 

  11. Hegerfeldt, G.C., Seidel, D., Muga, J.G., Navarro, B.: Operator-normalized quantum arrival times in the presence of interactions. Phys. Rev. A 70, 012110 (2004). and references therein

    Article  ADS  Google Scholar 

  12. Giannitrapani, R.: Positive-operator-valued time observable in quantum mechanics. Int. J. Theor. Phys. 36, 1575 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Moyer, C.A.: arXiv:1305.5525v1

  14. Erdélyi, A.: Asymptotic Expansions, p. 47. Dover Publications Inc., New York (1956)

    MATH  Google Scholar 

  15. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 5th edn, p. 691. Harcourt Academic Press, San Diego (2001)

    MATH  Google Scholar 

  16. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 4th edn, pp. 757–8. Academic Press, New York (1965)

    Google Scholar 

  17. Erdélyi, A. (ed.): Higher Transcendental Functions, vol. II, p. 12. McGraw-Hill, New York (1953)

  18. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions, p. 360. Dover, New York (1965)

  19. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, p. 364. Dover, New York (1965)

  20. Newton, R.G.: Scattering Theory of Waves and Particles, 2nd edn, p. 38. Dover, New York (2002)

  21. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 5th edn, p. 801. Harcourt Academic Press, San Diego (2001)

    MATH  Google Scholar 

  22. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 4th edn, p. 337. Academic Press, New York (1965)

    Google Scholar 

  23. Erdélyi, A.: Higher Transcendental Functions, vol. II. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  24. Erdélyi, A.: Higher Transcendental Functions, vol. II., pp. 122–123. McGraw-Hill, New York (1953)

  25. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 5th edn, p. 740. Harcourt Academic Press, San Diego (2001)

    MATH  Google Scholar 

  26. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 5th edn, p. 796. Harcourt Academic Press, San Diego (2001)

    MATH  Google Scholar 

  27. Baute, A.D., Egusquiza, I.L., Muga, J.G.: Time-of-arrival distributions for interaction potentials. Phys. Rev. A 64, 012501 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curt A. Moyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyer, C.A. Timelines and Quantum Time Operators. Found Phys 45, 382–403 (2015). https://doi.org/10.1007/s10701-015-9870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9870-0

Keywords

Navigation