Foundations of Physics

, Volume 45, Issue 4, pp 370–381 | Cite as

Spin-Statistics Connection for Relativistic Quantum Mechanics

Article

Abstract

The spin-statistics connection has been proved for nonrelativistic quantum mechanics (Jabs in Found Phys 40:776–792, 2010). The proof is extended here to the relativistic regime using the parametrized Dirac equation. A causality condition is not required.

Keywords

Relativistic quantum mechanics Spin and statistics Parametrized dirac equation Spin frames Causality  Entanglement 

References

  1. 1.
    Itzykson, C., Zuber, J.-B.: Quantum Field Theory. Dover, Mineola, NY (2005)Google Scholar
  2. 2.
    Weinberg, S.: The Quantum Theory of Fields, Vol. 1. Foundations. Cambridge University Press, Cambridge and New York (1995)Google Scholar
  3. 3.
    Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton, NJ (2003)Google Scholar
  4. 4.
    Srednicki, M.: Quantum Field Theory. Cambridge University Press, Cambridge and New York (2007)CrossRefMATHGoogle Scholar
  5. 5.
    Weinberg, S.: Lectures on Quantum Mechanics. Cambridge University Press, Cambridge and New York (2013)MATHGoogle Scholar
  6. 6.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. International Series in Pure and Applied Physics. McGraw-Hill, New York, NY (1964)Google Scholar
  7. 7.
    Jabs, A.: Connecting spin and statistics in quantum mechanics. Found. Phys. 40, 776–792 (2010)CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Garcia Alvarez, E.T., Gaioli, F.H.: Feynman’s proper time approach to QED. Found. Phys. 28(10), 1529–1538 (1998)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Barut, A.O., Thacker, W.C.: Covariant generalization of the zitterbewegung of the electron and its SO(4,2) and SO(3,2) internal algebras. Phys. Rev. D 31(6), 1386–1392 (1985)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Evans, A.B.: On expected values and “negative probability” in 4-space QED. Found. Phys. 28, 291–306 (1998)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Bennett, A.F.: First quantized electrodynamics. Ann. Phys. 345, 1–16 (2014)CrossRefADSGoogle Scholar
  12. 12.
    Taylor, J.R.: Scattering Theory: The Quantum Theory of Nonrelativistic Collisions. Wiley, New York (1972)Google Scholar
  13. 13.
    Boyer, T.H.: Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev. 182(5), 1374–1383 (1969)CrossRefADSGoogle Scholar
  14. 14.
    Boyer, T.H.: Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 11(4), 790–808 (1975)CrossRefADSGoogle Scholar
  15. 15.
    Camparo, J.C.: Semiclassical random electrodynamics: spontaneous emission and the Lamb shift. J. Opt. Soc. Am. B 16(1), 173–181 (1999)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Fox, M.: Quantum Optics. Oxford Master Series in Atomic, Optical and Laser Physics. Oxford University Press, New York, NY (2006)Google Scholar
  17. 17.
    Greenstein, G., Zajonc, A.G.: The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics. Physics and Astronomy, 2nd edn. Jones & Bartlett Learning, Sudbury, MA (2005)Google Scholar
  18. 18.
    Thorn, J.J., Neel, M.S., Donato, V.W., Bergreen, G.S., Davies, R.E., Beck, M.: Observing the quantum behavior of light in an undergraduate laboratory. Am. J. Phys. 72(9), 1210–1219 (2004)CrossRefADSGoogle Scholar
  19. 19.
    de la Peña, L., Cetto, A.M.: The Quantum Dice, Volume 75 of Fundamental Theories of Physics. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  20. 20.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. III. Addison-Wesley, Reading, MA (1965)MATHGoogle Scholar
  21. 21.
    Cho, A.: Higgs boson makes debut after decades-long search. Science 337(6091), 141–143 (2012)CrossRefADSGoogle Scholar
  22. 22.
    Cho, A.: Higgs boson makes debut after decades-long search. Science 337(6097), 911 (2012)ADSGoogle Scholar
  23. 23.
    Stueckelberg, E.C.G.: La signification du temps propre en mécanique ondulataire. Helv. Phys. Acta 14, 322–323 (1941)MathSciNetGoogle Scholar
  24. 24.
    Stueckelberg, E.C.G.: Remarque à propos de la création de paires de particles en théorie de relativité. Helv. Phys. Acta 14, 588–594 (1941)MathSciNetGoogle Scholar
  25. 25.
    Stueckelberg, E.C.G.: La mécanique du point matérial en théorie de relativité et en théorie des quanta. Helv. Phys. Acta 15, 23–37 (1942)MathSciNetGoogle Scholar
  26. 26.
    Sozzi, M.: Discrete Symmetries and CP Violation: From Experiment to Theory. Oxford University Press, New York, NY (2008)Google Scholar
  27. 27.
    Summers, S.J.: Yet more ado about nothing: the remarkable relativistic vacuum state. In: Halvorson, H. (ed.) Deep Beauty, pp. 317–341. Cambridge University Press, Cambridge and New York (2011)CrossRefGoogle Scholar
  28. 28.
    Haag, R.: Quantum field theories with composite particles and asympotic conditions. Phys. Rev. 112(2), 669–673 (1958)CrossRefADSMATHMathSciNetGoogle Scholar
  29. 29.
    Araki, H., Hepp, K., Ruelle, D.: On the asymptotic behaviour of wightman functions in space-like directions. Helv. Phys. Acta 35(III), 164–174 (1962)MATHMathSciNetGoogle Scholar
  30. 30.
    Fredenhagen, K.: A remark on the cluster theorem. Commun. Math. Phys. 97, 461–463 (1985)CrossRefADSMATHMathSciNetGoogle Scholar
  31. 31.
    Reznik, B., Retzker, A., and Silman, J.: Violating Bell’s inequalities in vacuum. Phy. Rev. A, 71(042104) (2005)Google Scholar
  32. 32.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989)Google Scholar
  33. 33.
    Sabin, C., del Rey, M., García-Ripoll, J.J., and León, J.: Fermi problem with artificial atoms in circuit QED. Phys. Rev. Lett., 107(150402) (2011)Google Scholar
  34. 34.
    Sabin, C., Peropadre, B., del Rey, M., and Martín-Martínez, E.: Extracting past-future vacuum correlations using circuit QED. Phys. Rev. Lett., 109(033602) (2012)Google Scholar
  35. 35.
    Jonsson, R.H., Martín-Martínez, E., and Kempf, A.: Quantum signaling in cavity QED. Phys. Rev. A, 89(022330) (2014)Google Scholar
  36. 36.
    Scherübl, Z., Pályi, A., and Csonka, S.: Probing individual split Cooper pairs using the spin qubit toolkit. Phys. Rev. B, 89(205439) (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Earth, Ocean and Atmospheric SciencesOregon State UniversityCorvallisUSA

Personalised recommendations