Foundations of Physics

, Volume 45, Issue 3, pp 279–294 | Cite as

Condensed Matter Lessons About the Origin of Time

Article

Abstract

It is widely hoped that quantum gravity will shed light on the question of the origin of time in physics. The currently dominant approaches to a candidate quantum theory of gravity have naturally evolved from general relativity, on the one hand, and from particle physics, on the other hand. A third important branch of twentieth century ‘fundamental’ physics, condensed-matter physics, also offers an interesting perspective on quantum gravity, and thereby on the problem of time. The bottomline might sound disappointing: to understand the origin of time, much more experimental input is needed than what is available today. Moreover it is far from obvious that we will ever find out the true origin of physical time, even if we become able to directly probe physics at the Planck scale. But we might learn some interesting lessons about time and the structure of our universe in the process. A first lesson is that there are probably several characteristic scales associated with “quantum gravity” effects, rather than the single Planck scale usually considered. These can differ by several orders of magnitude, and thereby conspire to hide certain effects expected from quantum gravity, rendering them undetectable even with Planck-scale experiments. A more tentative conclusion is that the hierarchy between general relativity, special relativity and Newtonian physics, usually taken for granted, might have to be interpreted with caution.

Keywords

Emergent gravity Time Analogue gravity Condensed matter physics Quantum gravity 

References

  1. 1.
    Volovik, G.E.: The Universe in a Helium Droplet. Clarendon Press, Oxford (2003)MATHGoogle Scholar
  2. 2.
    Unruh, W.G.: Experimental black hole evaporation? Phys. Rev. Lett. 46, 1351 (1981)CrossRefADSGoogle Scholar
  3. 3.
    Visser, M.: Acoustic black holes: horizons, ergospheres, and Hawking radiation. Class. Quantum Gravity 15, 1767 (1998)CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Rel. 14, 3 (2011)Google Scholar
  5. 5.
    Lahav, O., Itah, A., Blumkin, A., Gordon, C., Steinhauer, J.: Realization of a sonic black hole analogue in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010)CrossRefADSGoogle Scholar
  6. 6.
    Steinhauer, J.: Observation of self-amplifying Hawking radiation in an analog black hole laser. Nat. Phys. 10, 864 (2014)CrossRefGoogle Scholar
  7. 7.
    Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040 (1968) [Dokl. Akad. Nauk Ser. Fiz. 177, 70 (1967)]Google Scholar
  8. 8.
    Girelli, F., Liberati, S., Sindoni, L.: Gravitational dynamics in Bose–Einstein condensates. Phys. Rev. D 78, 084013 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Girelli, F., Liberati, S., Sindoni, L.: Emergence of Lorentzian signature and scalar gravity. Phys. Rev. D 79, 044019 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Barceló, C., Carballo-Rubio, R., Garay, L.J., Jannes, G.: Electromagnetism as an emergent phenomenon: a step-by-step guide. New J. Phys. 16(12), 123028 (2014)CrossRefADSGoogle Scholar
  11. 11.
    Padmanabhan, T.: Dark energy and its implications for gravity. Adv. Sci. Lett. 2, 174 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)CrossRefADSMATHMathSciNetGoogle Scholar
  13. 13.
    Volovik, G.E.: Vacuum energy: myths and reality. Int. J. Mod. Phys. D 15, 1987 (2006)CrossRefADSMATHMathSciNetGoogle Scholar
  14. 14.
    Jannes, G., Volovik, G.E.: The cosmological constant: a lesson from the effective gravity of topological Weyl media. JETP Lett. 96, 215 (2012)CrossRefADSGoogle Scholar
  15. 15.
    Barceló, C.: Cosmology as a search for overall equilibrium. JETP Lett. 84, 635 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Klinkhamer, F.R., Volovik, G.E.: Self-tuning vacuum variable and cosmological constant. Phys. Rev. D 77, 085015 (2008)CrossRefADSGoogle Scholar
  17. 17.
    Klinkhamer, F.R., Volovik, G.E.: Dynamics of the quantum vacuum: cosmology as relaxation to the equilibrium state. J. Phys. Conf. Ser. 314, 012004 (2011)CrossRefADSGoogle Scholar
  18. 18.
    Fagnocchi, S., Finazzi, S., Liberati, S., Kormos, M., Trombettoni, A.: Relativistic Bose–Einstein condensates: a new system for analogue models of gravity. New J. Phys. 12, 095012 (2010)CrossRefADSGoogle Scholar
  19. 19.
    Barceló, C.: Lorentzian space-times from parabolic and elliptic systems of PDEs. In: Petkov, V. (ed.) Relativity and the dimensionality of the world. Springer, Berlin (2008)Google Scholar
  20. 20.
    Kuchar, K.V.: Time and interpretations of quantum gravity. Int. J. Mod. Phys. Proc. Suppl. D 20, 3 (2011)CrossRefADSMATHGoogle Scholar
  21. 21.
    Isham, C.J.: Canonical Quantum Gravity and the Problem of Time. arXiv:gr-qc/9210011
  22. 22.
    Barbour, J.: The Nature of Time. arXiv:0903.3489[gr-qc]
  23. 23.
    Rovelli, C.: Forget time. Found. Phys. 41, 1475 (2011)CrossRefADSMATHMathSciNetGoogle Scholar
  24. 24.
    Jacobson, T., Liberati, S., Mattingly, D.: Lorentz violation at high energy: concepts, phenomena and astrophysical constraints. Ann. Phys. 321, 150 (2006)CrossRefADSMATHGoogle Scholar
  25. 25.
    Liberati, S.: Tests of Lorentz invariance: a 2013 update. Class. Quantum Gravity 30, 133001 (2013)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Klinkhamer, F.R., Volovik, G.E.: Merging gauge coupling constants without grand unification. Pisma Zh. Eksp. Teor. Fiz. 81, 683 (2005) [JETP Lett. 81, 551 (2005)]Google Scholar
  27. 27.
    Volovik, G.E.: Chiral anomaly and the law of conservation of momentum in \(^{3}\)He-A. JETP Lett. 43, 551 (1986) [Pisma Zh. Eksp. Teor. Fiz. 43, 428 (1986)]Google Scholar
  28. 28.
    Barceló, C., Garay, L.J., Jannes, G.: Quantum non-gravity and stellar collapse. Found. Phys. 41, 1532 (2011)CrossRefADSMATHMathSciNetGoogle Scholar
  29. 29.
    Barceló, C., Jannes, G.: A real Lorentz–FitzGerald contraction. Found. Phys. 38, 191 (2008)CrossRefADSMATHMathSciNetGoogle Scholar
  30. 30.
    Volovik, G.E.: Vacuum energy and universe in special relativity. JETP Lett. 77, 639 (2003) [Pisma Zh. Eksp. Teor. Fiz. 77, 769 (2003)]Google Scholar
  31. 31.
    Zel’dovich, Y.B.: Interpretation of electrodynamics as a consequence of quantum theory. JETP Lett. 6, 345 (1967)ADSGoogle Scholar
  32. 32.
    Visser, M.: Sakharov’s induced gravity: a modern perspective. Mod. Phys. Lett. A 17, 977 (2002)CrossRefADSMATHMathSciNetGoogle Scholar
  33. 33.
    Belenchia, A., Liberati, S., Mohd, A.: Emergent gravitational dynamics in a relativistic Bose–Einstein condensate. Phys. Rev. D 90, 104015 (2014)CrossRefADSGoogle Scholar
  34. 34.
    Volovik, G.E.: The topology of the quantum vacuum. Lect. Notes Phys. 870, 343 (2013)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Feynman, R.P., Morinigo, F.B., Wagner, W.G., Hatfield, B.: Feynman Lectures on Gravitation. Addison-Wesley, New York (1995)Google Scholar
  36. 36.
    Weinberg, S., Witten, E.: Limits on massless particles. Phys. Lett. B 96, 59 (1980)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Jenkins, A.: Constraints on emergent gravity. Int. J. Mod. Phys. D 18, 2249 (2009)CrossRefADSMATHMathSciNetGoogle Scholar
  38. 38.
    Boulware, D.G., Deser, S.: Can gravitation have a finite range? Phys. Rev. D 6, 3368 (1972)CrossRefADSGoogle Scholar
  39. 39.
    de Rham, C., Gabadadze, G., Tolley, A.J.: Resummation of massive gravity. Phys. Rev. Lett. 106, 231101 (2011)CrossRefADSGoogle Scholar
  40. 40.
    Baccetti, V., Martin-Moruno, P., Visser, M.: Massive gravity from bimetric gravity. Class. Quantum Gravity 30, 015004 (2013)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Volovik, G.E.: Singular behavior of the superfluid \(^3\)He-A at T = 0 and quantum field theory. J. Low Temp. Phys. 67, 301 (1987)CrossRefADSGoogle Scholar
  42. 42.
    Volovik, G.E.: ”Peculiarities in the dynamics of superfluid \(^3\)He-A: analog of chiral anomaly and of zero-charge. Sov. Phys. JETP 65, 1193 (1987)Google Scholar
  43. 43.
    Halperin, W.P., Pitaevskii, L.P. (eds.): Helium Three. Elsevier, Amsterdam (1990)Google Scholar
  44. 44.
    Sindoni, L.: Emergent models for gravity: an overview of microscopic models. SIGMA 8, 027 (2012)MathSciNetGoogle Scholar
  45. 45.
    Carlip, S.: Challenges for emergent gravity. Stud. Hist. Philos. Mod. Phys. 46, 200 (2014)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Modelling & Numerical Simulation GroupUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations