Foundations of Physics

, Volume 45, Issue 2, pp 211–217 | Cite as

Does it Make Sense to Speak of Self-Locating Uncertainty in the Universal Wave Function? Remarks on Sebens and Carroll

Article

Abstract

Following a proposal of Vaidman (Int Stud Philos Sci 12:245–261, 1998) (in: Zalta EN (ed) The Stanford encyclopaedia of philosophy, 2014) (in: Ben-Menahem Y, Hemmo M (ed) The probable and the improbable: understanding probability in physics, essays in memory of Itamar Pitowsky, 2011), Sebens and Carroll (Quantum theory: a two-time success story 2014), (arXiv preprint arXiv:1405.75772014) have argued that in Everettian (i.e. purely unitary) quantum theory, observers are uncertain, before they complete their observation, about which Everettian branch they are on. They argue further that this solves the problem of making sense of probabilities within Everettian quantum theory, even though the theory itself is deterministic. We note some problems with these arguments.

Keywords

Many worlds Quantum theory Everett Probability 

References

  1. 1.
    Albert, D.: Probability in the Everett picture. In: Saunders, S., Barrett, A., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, and Reality, pp. 355–368. Oxford University Press, Oxford (2010)Google Scholar
  2. 2.
    Albert, D., Loewer, B.: Interpreting the many worlds interpretation. Synthese 77(2), 195–213 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Carroll, S.M., Sebens, C.T.: Many worlds, the Born rule, and self-locating uncertainty. In: Quantum Theory: A Two-Time Success Story, pp. 157–169. Springer, Milan (2014)Google Scholar
  5. 5.
    Deutsch, D.: Comment on Lockwood. Br. J. Philos. Sci. 47(2), 222–228 (1996)Google Scholar
  6. 6.
    DeWitt, B.S., Graham, N.: The many-worlds interpretation of quantum mechanics. Princeton Series in Physics. Books on DemandGoogle Scholar
  7. 7.
    Everett III, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gell-Mann, M., Hartle, J.B.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W. (ed.) Complexity, Entropy and the Physics of Information, pp. 425–458. Addison Wesley, Reading (1990)Google Scholar
  9. 9.
    Geroch, R.: The Everett interpretation. Noüs 18(4), 617–633 (1984)MathSciNetGoogle Scholar
  10. 10.
    Hartle, J.B.: The quantum mechanics of cosmology. In: Piran, T., Coleman, S., Hartle, J., Weinberg, S. (ed.) Quantum cosmology and Baby Universes: Proceedings of the 7th Jerusalem Winter School for Theoretical Physics, pp. 65–157. World Scientific, 1991Google Scholar
  11. 11.
    Kastner, R.E: Einselection of pointer observables: The new H-theorem? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics (2014)Google Scholar
  12. 12.
    Kent, A.: Against many-worlds interpretations. Int. J. Mod. Phys. 5, 1745–1762 (1990)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kent, A.: One world versus many: the inadequacy of Everettian accounts of evolution, probability, and scientific confirmation. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (ed) Many worlds? Everett, Quantum Theory, and Reality, pp. 307–354. Oxford University Press (2010). arXiv:0905.0624
  14. 14.
    Kent, A.: Solution to the Lorentzian quantum reality problem. Phys. Rev. A 90, 012107 (2014)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Price, H.: Decisions, decisions, decisions: Can Everett salvage Savage? In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, and Reality, pp. 369–390. Oxford University Press, Oxford (2010)Google Scholar
  16. 16.
    Riedel, C.J., Zurek, W.H., Zwolak, M.: The objective past of a quantum universe—Part 1: redundant records of consistent histories (2013). arXiv:1312.0331
  17. 17.
    Saunders, S., Barrett, J., Kent, A., Wallace, D.: Many Worlds?: Everett, Quantum Theory, and Reality. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  18. 18.
    Sebens, C.T, Carroll ,S.M.: Self-locating uncertainty and the origin of probability in Everettian quantum mechanics. arXiv preprint arXiv:1405.7577, (2014)
  19. 19.
    Vaidman, L.: Schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. Int. Stud. Philos. Sci. 12, 245–261 (1998)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: Zalta, E.N. (ed,) The Stanford Encyclopedia of Philosophy, (Spring 2014 Edition). http://plato.stanford.edu/archives/spr2014/entries/qm-manyworlds/
  21. 21.
    Vaidman, L.: Probability in the many-worlds interpretation of quantum mechanics. In: Ben-Menahem, Y., Hemmo, M. (eds.) The Probable and the Improbable: Understanding Probability in Physics, Essays in Memory of Itamar Pitowsky. Springer, Berlin (2011)Google Scholar
  22. 22.
    Wallace, D.: Decoherence and ontology. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many worlds?: Everett, Quantum Theory, and Reality, pp. 53–72. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  23. 23.
    Wallace, D.: The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  24. 24.
    Zurek, W.H.: Quantum Darwinism. Nat. Phys. 5(3), 181–188 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Centre for Quantum Information and Foundations, Centre for Mathematical Sciences, DAMTPUniversity of CambridgeCambridgeUK
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations