Foundations of Physics

, Volume 45, Issue 2, pp 198–210 | Cite as

Electromagnetically Induced Transparency and Autler–Townes Splitting in a Superconducting Quantum Circuit with a Four-Level V-Type Energy Spectrum

  • Haichao Li
  • Guoqin Ge
  • Lingmin Liao
  • Shunbin Feng


We investigate electromagnetically induced transparency (EIT) and Autler–Townes splitting (ATS) in a superconducting quantum circuit with a four-level V-type energy spectrum constructed by two coupled superconducting charge qubits. We show that it is possible for this four-level superconducting system to exhibit multiple dips in the absorption spectrum of a probe field, with at most three dips resulting from a combination of two ATS subsystems, which indicates the breakdown of the traditional correspondence between a \((N+1)\)-level system and \(N-1\) dips. It is also shown that the switching from EIT to ATS can be realized in a three-level ladder-type subsystem.


Electromagnetically induced transparency Autler–Townes splitting Four-level superconducting quantum circuit 



This work was supported in part by the National Natural Science Foundation of China under the Grant No. 11274132 and the Hubei Provincial Natural Science Foundation of China.


  1. 1.
    Boller, K.J., Imamoglu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. lett. 66, 2593–2596 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)CrossRefGoogle Scholar
  3. 3.
    Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Chanu, S.R., Pandey, K., Natarajan, V.: Conversion between electromagnetically induced transparency and absorption in a three-level lambda system. Europhys. Lett. 98, 44009 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Lazoudis, A., Kirova, T., Ahmed, E.H., Qi, P., Huennekens, J., Lyyra, A.M.: Electromagnetically induced transparency in an open V-type molecular system. Phys. Rev. A 83, 063419 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Li, L., Zhu, C., Deng, L., Huang, G.: Electromagnetically induced transparency and nonlinear pulse propagation in an atomic medium confined in a waveguide. J. Opt. Soc. Am. B 30, 197–204 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, H., Gu, X., Liu, Y., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Wielandy, S., Gaeta, A.L.: Investigation of electromagnetically induced transparency in the strong probe regime. Phys. Rev. A 58, 2500–2505 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Autler, S.H., Townes, C.H.: Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955)ADSCrossRefGoogle Scholar
  11. 11.
    Anisimov, P., Kocharovskaya, O.: Decaying-dressed-state analysis of a coherently driven three-level system. J. Mod. Opt. 55, 3159–3171 (2008)CrossRefGoogle Scholar
  12. 12.
    Abi-Salloum, T.Y.: Electromagnetically induced transparency and Autler–Townes splitting: two similar but distinct phenomena in two categories of three-level atomic systems. Phys. Rev. A 81, 053836 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Anisimov, P., Dowling, J.P., Sanders, B.C.: Objectively discerning Autler–Townes splitting from electromagnetically induced transparency. Phys. Rev. lett. 107, 163604 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Giner, L., Veissier, L., Sparkes, B., Sheremet, A.S., Nicolas, A., Mishina, O.S., Scherman, M., Burks, S., Shomroni, I., Kupriyanov, D.V., Lam, P.K., Giacobino, E., Laurat, J.: Experimental investigation of the transition between Autler–Townes splitting and electromagnetically-induced-transparency models. Phys. Rev. A 87, 013823 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Sun, H., Liu, Y., Ian, H., You, J.Q., Ilichev, E., Nori, F.: Electromagnetically induced transparency and Autler–Townes splitting in superconducting flux quantum circuits. Phys. Rev. A 89, 063822 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Peng, B., özdemir, S.K., Chen, W., Nori, F., and Yang, L.: What is- and what is not- Electromagnetically-Induced-Transparency in Whispering-Gallery-Microcavities. arXiv:1404.5941
  17. 17.
    You, J.Q., Tsai, J.S., Nori, F.: Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits. Phys. Rev. B 68, 024510 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162–166 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Garcia-Ripoll, J.J., Zueco, D., Hümmer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010)CrossRefGoogle Scholar
  21. 21.
    You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature(London) 474, 589–597 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Xiang, Z., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42–47 (2005)CrossRefGoogle Scholar
  24. 24.
    Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature(London) 453, 1031–1042 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Pashkin, Y.A., Astafiev, O., Yamamoto, T., Nakamura, Y., Tsai, J.S.: Josephson charge qubits: a brief review. Quantum Inf. Proc. 8, 55–80 (2009)CrossRefGoogle Scholar
  26. 26.
    Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Astafiev, O., Inomata, K., Niskanen, A.O., Yamamoto, T., Pashkin, Y.A., Nakamura, Y., Tsai, J.S.: Single artificial-atom lasing. Nature(London) 449, 588–590 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Hauss, J., Fedorov, A., Hutter, C., Shnirman, A., Schön, G.: Single-qubit lasing and cooling at the Rabi frequency. Phys. Rev. lett. 100, 037003 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Ashhab, S., Johansson, J.R., Zagoskin, A.M., Nori, F.: Single-artificial-atom lasing using a voltage-biased superconducting charge qubit. New J. Phys. 11, 023030 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Kelly, W.R., Dutton, Z., Schlafer, J., Mookerji, B., Ohki, T.A.: Direct observation of coherent population trapping in a superconducting artificial atom. Phys. Rev. Lett. 104, 163601 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Sillanpää, M.A., Li, J., Cicak, K., Altomare, F., Park, J.I., Simmonds, R.W., Paraoanu, G.S., Hakonen, P.J.: Autler–Townes effect in a superconducting three-level system. Phys. Rev. Lett. 103, 193601 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Buluta, I., Nori, F.: Quantum simulators. Science 326, 108–111 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F.: Colloquium: stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1–24 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Dutton, Z., Murali, K.V.R.M., Oliver, W.D., Orlando, T.P.: Electromagnetically induced transparency in superconducting quantum circuits: effects of decoherence, tunneling, and multilevel crosstalk. Phys. Rev. B 73, 104516 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Murali, K.V.R.M., Dutton, Z., Oliver, W.D., Crankshaw, D.S., Orlando, T.P.: Probing decoherence with electromagnetically induced transparency in superconductive quantum circuits. Phys. Rev. lett. 93, 087003 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Yuan, X.Z., Goan, H.S., Lin, C.H., Zhu, K.D., Jiang, Y.W.: Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system. New J. Phys. 10, 095016 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Ian, H., Liu, Y.X., Nori, F.: Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Phys. Rev. A 81, 063823 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Joo, J., Bourassa, J., Blais, A., Sanders, B.C.: Electromagnetically induced transparency with amplification in superconducting circuits. Phys. Rev. lett. 105, 073601 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Li, J., Paraoanu, G.S., Cicak, K., Altomare, F., Park, J.I., Simmonds, R.W., Sillanpää, M.A., Hakonen, P.J.: Decoherence, Autler–Townes effect, and dark states in two-tone driving of a three-level superconducting system. Phys. Rev. B 84, 104527 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Novikov, S., Robinson, J.E., Keane, Z.K., Suri, B., Wellstood, F.C., Palmer, B.S.: Autler–Townes splitting in a three-dimensional transmon superconducting qubit. Phys. Rev. B 88, 060503(R) (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Rebić, S., Twamley, J., Milburn, G.J.: Giant Kerr nonlinearities in circuit quantum electrodynamics. Phys. Rev. Lett. 103, 150503 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Hou, B.P., Wang, S.J., Yu, W.L., Sun, W.L.: Control of one- and two-photon absorption in a four-level atomic system by changing the amplitude and phase of a driving microwave field. J. Phys. B: At. Mol. Opt. Phys. 38, 1419–1434 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Shen, J.Q., Zhang, P.: Double-control quantum interferences in a four-level atomic system. Opt. Express 15, 6484–6494 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Osman, K.I., Swain, S.: Time-dependent aspects of the Autler–Townes effect in a four-level system. Phys. Rev. A 25, 3187–3194 (1982)ADSCrossRefGoogle Scholar
  46. 46.
    Wessel, J.E., Cooper, D.E.: Stark spectroscopy and Autler–Townes interactions in four-level cesium atoms. Phys. Rev. A 35, 1621–1627 (1987)ADSCrossRefGoogle Scholar
  47. 47.
    Paspalakis, E., Knight, P.L.: Electromagnetically induced transparency and controlled group velocity in a multilevel system. Phys. Rev. A 66, 015802 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    Shen, J.Q.: Transient evolutional behaviours of double-control electromagnetically induced transparency. New J. Phys. 9, 374 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    Lazoudis, A., Kirova, T., Ahmed, E.H., Li, L., Qi, J., Lyyra, A.M.: Electromagnetically induced transparency in an open \(\Lambda \)-type molecular lithium system. Phys. Rev. A 82, 023812 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Welch, G.R., Padmabandu, G.G., Fry, E.S., Lukin, M.D., Nikonov, D.E., Sander, F., Scully, M.O., Weis, A., Tittel, F.K.: Observation of V-type electromagnetically induced transparency in a sodium atomic beam. Found. Phys. 28, 621–638 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Haichao Li
    • 1
  • Guoqin Ge
    • 1
  • Lingmin Liao
    • 1
  • Shunbin Feng
    • 1
  1. 1.School of PhysicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations