Skip to main content
Log in

A Discussion on the Properties of Gamow States

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Gamow states are vector states for the pure decaying part of a quantum resonance. We review and analyze the properties of Gamow vectors in different representations. In particular, we discuss the controversial problem of assigning a mean value of the energy for a Gamow state from several points of view. The question on whether a Gamow state is a pure state or not is also analyzed here, as has relevance on the assignation of a non-zero value for the entropy for a Gamow state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fonda, L., Ghirardi, G.C., Rimini, A.: Decay theory of unstable quantum systems. Rep. Progr. Phys. 41, 588–631 (1978)

    Article  ADS  Google Scholar 

  2. Fischer, M.C., Gutierrez-Medina, B., Raizen, M.G.: Observation of the quantum Zeno and anti-Zeno effects in an unstable system. Phys. Rev. Lett. 87, 040402 (2001)

    Article  ADS  Google Scholar 

  3. Rothe, C., Hintschich, S.L., Monkman, A.P.: Violation of the exponential-decay law at long times. Phys. Rev. Lett. 96, 163601 (2006)

    Article  ADS  Google Scholar 

  4. Nakanishi, N.: A theory of clothed unstable particles. Progr. Theor. Phys. 19, 607–621 (1958)

    Article  ADS  MATH  Google Scholar 

  5. Bohm, A.: The Rigged Hilbert Space and Quantum Mechanics, Springer Lecture Notes in Physics, vol. 78. Springer, New York (1978)

    Book  Google Scholar 

  6. Gelfand, I.M., Vilenkin, N.Y.: Generalized Functions: Applications of Harmonic Analysis. Academic, New York (1964)

    Google Scholar 

  7. Roberts, J.E.: Rigged Hilbert spaces in quantum mechanics. Commun. Math. Phys. 3, 98–119 (1966)

    Article  ADS  MATH  Google Scholar 

  8. Antoine, J.P.: Dirac formalism and symmetry problems in quantum mechanics: General Dirac formalism. J. Math. Phys. 10, 53–69 (1969)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Melsheimer, O.: Rigged Hilbert spaces as an extended mathematical formalism for quantum mechanics: 1 General theory. J. Math. Phys. 15, 902–916 (1974)

  10. Bohm, A.: Resonance poles and Gamow vectors in the rigged Hilbert space formulation of quantum mechanics. J. Math. Phys. 22, 2813–2823 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bohm, A., Gadella, M.: Dirac Kets, Gamow Vectors and Gelfand Triplets, Springer Lecture Notes in Physics, vol. 348. Springer Verlag, Berlin (1989)

    Book  Google Scholar 

  12. Civitarese, O., Gadella, M.: Physical and mathematical aspects of Gamow states. Phys. Rep. 396, 41–113 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bohm, A.: Quantum Mechanics. Foundations and Applications, 3rd edn. Springer, New York (2001)

    MATH  Google Scholar 

  14. Julve, J., de Urriés, F.J.: Inner products of resonance solutions in 1D quantum barriers. J. Phys. A 43, 175301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Julve, J., Turrini, S., de Urriés, F.J.: Inner products of energy eigenstates for a 1-D quantum barrier. Int. J. Theor. Phys. 53, 971–984 (2014)

    Article  MATH  Google Scholar 

  16. Castagnino, M., Gadella, M., Gaioli, F., Laura, R.: Gamow vectors and time assymmetry. Int. J. Theor. Phys. 38, 2823–2865 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Berggren, T.: On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes. Nucl. Phys. A 109, 265–287 (1968)

    Article  ADS  Google Scholar 

  18. Berggren, T.: Expectation value of an operator in a resonant state. Phys. Lett. B 373, 1–4 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  19. Civitarese, O., Gadella, M., Id Betan, R.: On the mean value of the energy for resonance states. Nucl. Phys. A 660, 255–266 (1999)

    Article  ADS  Google Scholar 

  20. Petrosky, T., Prigogine, I., Tasaki, S.: Quantum theory of non-integrable systems. Phys. A 173, 175–242 (1991)

    Article  MathSciNet  Google Scholar 

  21. Bollini, C.G., Civitarese, O., de Paoli, A.L., Rocca, M.C.: Gamow states as continuous linear functionals over analytical test functions. J. Math. Phys. 37, 4235–4242 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Exner, P.: Open Quantum Systems and Feynman Integrals. Reidel, Dordrecht (1984)

    Google Scholar 

  23. Reed, M., Simon, B.: Analysis of Operators. Academic, New York (1978)

    MATH  Google Scholar 

  24. Antoniou, I.E., Laura, R., Suchanecki, Z., Tasaki, S.: Intrinsic irreversibility of quantum systems with diagonal singularity. Phys. A 241, 737–772 (1997)

    Article  Google Scholar 

  25. van Hove, L.: Energy corrections and persistent perturbation effects in continuous spectra. Physica 21, 901 (1955)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. van Hove, L.: The approach to equilibrium in quantum statistics. Physica 23, 441 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. van Hove, L.: The ergodic behaviour of quantum many-body systems. Physica 25, 268 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Castagnino, M., Gadella, M., Id Betan, R., Laura, R.: The Gamow functional. Phys. Lett. A 282, 245–250 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Castagnino, M., Gadella, M., Id Betan, R., Laura, R.: Gamow functionals on operator algebras. J. Phys. A 34, 10067–10083 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Friedrichs, K.O.: On the perturbation of continuous spectra. Commun. Appl. Math. 1, 361–406 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gadella, M., Pronko, G.P.: The Friedrichs model and its use in resonance phenomena. Fortschr. Phys. 59, 795–859 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bohm, A., Gadella, M., Kielanowski, P.: Time asymmetric quantum mechanics. SIGMA 7, 086 (2011)

    MathSciNet  Google Scholar 

  33. Bohm, A.R., Erman, F., Uncu, H.: Resonance phenomena and time asymmetric quantum mechanics. Turk. J. Phys. 35, 209–240 (2011)

    Google Scholar 

  34. Antoniou, I., Dmitrieva, L., Kuperin, Y., Melnikov, Y.: Resonances and the extension of dynamics to rigged Hilbert space. Comput. Math. Appl. 34, 399–425 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Civitarese, O., Gadella, M.: On the concept of entropy for decaying states. Found. Phys. 43, 1275–1294 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Antoniou, I., Pronko, G.P., Karpov, E., Yarevsky, E.: Oscillating decay of an unstable system. Int. J. Theor. Phys. 42, 2403–2421 (2003)

    Article  MATH  Google Scholar 

  37. Kukulin, V.I., Krasnapolsky, V.M., Horacek, J.: Theory of Resonances. Principles and Applications. Academia, Praha (1989)

    Book  MATH  Google Scholar 

  38. Gyarmati, B., Vertse, T.: On the normalization of Gamow functions. Nucl. Phys. A 160, 523–528 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  39. Gadella, M., Laura, R.: Gamow dyads and expectation values. Int. J. Quantum Chem. 81, 307–320 (2001)

    Article  Google Scholar 

  40. Bohm, A.: Resonance poles and Gamow vectors in the rigged Hilbert space formulation of quantum mechanics. J Math. Phys. 21, 2813–2823 (1981)

    Article  ADS  Google Scholar 

  41. Gadella, M.: Gamow vectors: miscellaneous results. J. Phys. Conf. Ser. 128, 012038 (2008)

    Article  ADS  Google Scholar 

  42. Bohm, A.R., Loewe, M., Van de Ven, B.: Time asymmetric quantum theory – I. Modifying an axiom of quantum physics. Fortschr. Phys. 51, 551–568 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gadella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadella, M. A Discussion on the Properties of Gamow States. Found Phys 45, 177–197 (2015). https://doi.org/10.1007/s10701-014-9860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9860-7

Keywords

Navigation