Foundations of Physics

, Volume 45, Issue 2, pp 171–176 | Cite as

Between Quantum and Classical Gravity: Is There a Mesoscopic Spacetime?

  • Eolo Di Casola
  • Stefano Liberati
  • Sebastiano Sonego
Article

Abstract

Between the microscopic domain ruled by quantum gravity, and the macroscopic scales described by general relativity, there might be an intermediate, “mesoscopic” regime, where spacetime can still be approximately treated as a differentiable pseudo-Riemannian manifold, with small corrections of quantum gravitational origin. We argue that, unless one accepts to give up the relativity principle, either such a regime does not exist at all—hence, the quantum-to-classical transition is sharp—, or the only mesoscopic, tiny corrections conceivable are on the behaviour of physical fields, rather than on the geometric structures.

Keywords

Quantum gravity phenomenology Quantum spacetime Classical spacetime Special relativity Lorentz transformations Clocks and rods Planck scale 

References

  1. 1.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)CrossRefMATHGoogle Scholar
  2. 2.
    Rovelli, C.: Loop quantum gravity: the first 25 years. Class. Quantum Grav. 28, 153002 (2011). E-print arXiv:1012.4707 [gr–qc]
  3. 3.
    Oriti, D.: The microscopic dynamics of quantum space as a group field theory. In: Murugan, J., Weltman, A., Ellis, G.F.R. (eds.), Foundations of Space and Time, pp. 257–320. Cambridge University Press, Cambridge (2012). E-print arXiv:1110.5606 [hep-th]
  4. 4.
    Dowker, F.: Introduction to causal sets and their phenomenology. Gen. Relativ. Gravit. 45, 1651 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Sorkin, R.D.: Does locality fail at intermediate length-scales?. In: Oriti, D. (ed.), Approaches to Quantum Gravity, pp. 26–43. Cambridge University Press, Cambridge (2009). E-print gr-qc/0703099
  6. 6.
    Liberati, S.: Tests of Lorentz invariance: a 2013 update. Class. Quantum Grav. 30, 133001 (2013). E-print arXiv:1304.5795 [gr-qc]
  7. 7.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)Google Scholar
  8. 8.
    Brown, H.R.: Physical Relativity. Oxford University Press, Oxford (2005)CrossRefMATHGoogle Scholar
  9. 9.
    Sonego, S., Pin, M.: Foundations of anisotropic relativistic mechanics. J. Math. Phys. 50, 042902 (2009). E-print arXiv:0812.1294 [gr-qc]
  10. 10.
    Dray, T., Manogue, C.A., Tucker, R.W.: Particle production from signature change. Gen. Relativ. Gravit. 23, 967 (1991)Google Scholar
  11. 11.
    White, A., Weinfurtner, S., Visser, M.: Signature change events: a challenge for quantum gravity? Class. Quantum Grav. 27, 045007 (2010). E-print arXiv:0812.3744 [gr-qc]
  12. 12.
    Baccetti, V., Tate, K., Visser, M.: Inertial frames without the relativity principle. JHEP 1205, 119 (2012). E-print arXiv:1112.1466 [gr-qc]
  13. 13.
    Rovelli C., Speziale, S.: Lorentz covariance of loop quantum gravity. Phys. Rev. D 83, 104029 (2011). E-print arXiv:1012.1739 [gr-qc]
  14. 14.
    Gibbons, G.W., Gomis, J., Pope, C.N.: General very special relativity is Finsler geometry. Phys. Rev. D 76, 081701 (2007). E-print arXiv:0707.2174 [hep-th]
  15. 15.
    Hossenfelder, S.: Phenomenology of space-time imperfection. I. Nonlocal defects. Phys. Rev. D 88, 124030 (2013). E-print arXiv:1309.0311 [hep-ph]
  16. 16.
    Liberati, S., Sonego S., Visser, M.: Interpreting doubly special relativity as a modified theory of measurement. Phys. Rev. D. 71, 045001 (2005). E-print gr-qc/0410113
  17. 17.
    Hossenfelder, S.: Bounds on an energy-dependent and observer-independent speed of light from violations of locality. Phys. Rev. Lett. 104, 140402 (2010). E-print arXiv:1004.0418 [hep-ph]
  18. 18.
    Amelino-Camelia, G., Freidel, L., Kowalski-Glikman J., Smolin, L.: The principle of relative locality. Phys. Rev. D 84, 084010 (2011). E-print arXiv:1101.0931 [hep-th]
  19. 19.
    Hossenfelder, S.: The soccer-ball problem, SIGMA 10, 074 (2014). E-print arXiv:1403.2080 [gr-qc]

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eolo Di Casola
    • 1
    • 2
  • Stefano Liberati
    • 1
    • 2
  • Sebastiano Sonego
    • 3
  1. 1.SISSATriesteItaly
  2. 2.Sezione di TriesteINFNTriesteItaly
  3. 3.Sezione di Fisica e Matematica, DCFAUniversità di UdineUdineItaly

Personalised recommendations