Foundations of Physics

, Volume 45, Issue 3, pp 253–278 | Cite as

Relations Between Different Notions of Degrees of Freedom of a Quantum System and Its Classical Model

Article

Abstract

There are at least three different notions of degrees of freedom (DF) that are important in comparison of quantum and classical dynamical systems. One is related to the type of dynamical equations and inequivalent initial conditions, the other to the structure of the system and the third to the properties of dynamical orbits. In this paper, definitions and comparison in classical and quantum systems of the tree types of DF are formulated and discussed. In particular, we concentrate on comparison of the number of the so called dynamical DF in a quantum system and its classical model. The comparison involves analyzes of relations between integrability of the classical model, dynamical symmetry and separability of the quantum and the corresponding classical systems and dynamical generation of appropriately defined quantumness. The analyzes is conducted using illustrative typical systems. A conjecture summarizing the observed relation between generation of quantumness by the quantum dynamics and dynamical properties of the classical model is formulated.

Keywords

Degrees of freedom Generation of quantumness Hamiltonian dynamics 

References

  1. 1.
    Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, New York (1998)CrossRefGoogle Scholar
  2. 2.
    d’Espagnat, B.: Reality and the Physicist. Cambridge University Press, Cambridge (1989)Google Scholar
  3. 3.
    Dowling, J.P., Milburn, G.J.: Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 3655 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dragoman, D., Dragoman, M.: Quantum-Classical Analogies. Springer, New York (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Zhang, W.M., Martins, C.C., Feng, D.H., Yuan, J.M.: Dynamical symmetry breaking and quantum nonintegrability. Phys. Rev. Lett 61, 2167 (1988)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Zhang, W.M., Feng, D.H., Yuan, J.M.: Integrability and nonintegrability of quantum systems: quantum integrability and dynamical symmetry. Phys. Rev. A 40, 438 (1989)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Zhang, W.M., Feng, D.H., Yuan, J.M.: Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space. Phys. Rev. A 42, 7125 (1990)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Barnum, H., Knill, E., Ortiz, G., Viola, L.: Generalizations of entanglement based on coherent states and convex sets. Phys. Rev. A 68, 032308 (2003)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent generalization of entanglement. Phys. Rev. Lett. 92, 107902 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Viola, L., Barnum, H., Knill, E., Ortiz, G., Soma, R.: Entanglement beyond subsystems. arXiv:quant-ph/0403044 (2004)
  11. 11.
    Klyachko, A.: Dynamic symmetry approach to entanglement. arXiv:0802.4008 [quant-ph] (2008)
  12. 12.
    Zanardi, P., Lidar, D.A., Lloyed, S.: Quantum tensor product structures are observable-induced. arXiv:quant-ph/0308043 (2003)
  13. 13.
    Radonjić, M., Prvanović, S., Burić, N.: System of classical nonlinear oscillators as a coarse-grained quantum system. Phys. Rev. A 84, 022103 (2011)CrossRefADSGoogle Scholar
  14. 14.
    Radonjić, M., Prvanović, S., Burić, N.: Emergence of classical behavior from the quantum spin. Phys. Rev. A 85, 022117 (2012)CrossRefADSGoogle Scholar
  15. 15.
    Ashtekar, A., Schilling, T.A.: On Einsteins Path, Harvey, A. (ed.). Springer, Berlin (1998)Google Scholar
  16. 16.
    Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19 (2001)CrossRefADSMATHMathSciNetGoogle Scholar
  17. 17.
    Ercolessi, E., Marmo, G., Morandi, G.: La Rivista del Nuovo Cimento 33, p. 401 (2010)Google Scholar
  18. 18.
    Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)MATHGoogle Scholar
  19. 19.
    Umberger, D.K., Farmer, J.D.: Fat fractals on the energy surface. Phys. Rev. Lett. 55, 661 (1985)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Buric, N., Percival, I.C.: Modular smoothing and KAM tori. Physica D 71, 39 (1994)CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    Perelomov, A.M.: Generalzed Coherent States and Their Applications. Springer, Berlin (1986)CrossRefGoogle Scholar
  22. 22.
    Zhang, W.M., Feng, D.H., Gilmore, R.: Coherent states: theory and some applications. Rev. Mod. Phys. 62, 867 (1990)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Buric, N.: Dynamical entanglement versus symmetry and dynamics of classical approximations. Phys. Rev. A 73, 052111 (2006)CrossRefADSGoogle Scholar
  24. 24.
    Buric, N.: Hamiltonian quantum dynamics with separability constraints. Ann. Phys. (NY) 233, 17 (2008)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Tabor, M.: Chaos and Integrability in Nonlinear Systems. An introduction. Wiley, New York (1989)Google Scholar
  26. 26.
    Giannoni, M.-J., Voros, A., Zinn-Justin, J. (eds.): Chaos and Quantum Physics. Les Houshes session LII. North-Holland, Amsterdam (1991)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations