Foundations of Physics

, Volume 45, Issue 2, pp 158–170 | Cite as

Reversible Heat Engines: Bounds on Estimated Efficiency from Inference

Article

Abstract

We consider work extraction from two finite reservoirs with constant heat capacity, when the thermodynamic coordinates of the process are not fully specified, i.e., are described by probabilities only. Incomplete information refers to both the specific value of the temperature as well as the label of the reservoir to which it is assigned. Based on the concept of inference, we characterize the reduced performance resulting from this lack of control. Indeed, the estimates for the average efficiency reveal that uncertainty regarding the exact labels reduces the maximal expected efficiency below the Carnot value (\(\eta _\mathrm{C}\)), its minimum value reproducing the well known Curzon–Ahlborn value: \(1-\sqrt{1-\eta _\mathrm{C}}\). We also estimate the efficiency before the value of the temperature is revealed. It is found that if the labels are known with certainty, then in the near-equilibrium limit the efficiency scales as \(\eta _\mathrm{C}/2\), while if there is maximal uncertainty in the labels, then the average estimate for efficiency drops to \(\eta _\mathrm{C}/3\). We also suggest how the inferred properties of the incomplete model can be mapped onto a model with complete information but with an additional source of thermodynamic irreversibility.

Keywords

Inference Prior information Heat engines Thermal efficiency Irreversibility 

References

  1. 1.
    Goyal, P.: Information physics—towards a new conception of physical reality. Information 3, 567–594 (2012)CrossRefGoogle Scholar
  2. 2.
    Bernoulli, J.: The Art of Conjecturing, Together with Letter to a Friend on Sets in Court Tennis (trans: Sylla, E. D.), Johns Hopkins University Press, Baltimore ( 2006).Google Scholar
  3. 3.
    Laplace, P.S.: Memoir on the probabilities of the causes of events (trans: Stigler, S.M.). Stat. Sci. 1, 364–378 (1986).Google Scholar
  4. 4.
    Bayes, T.: An essay towards solving a problem in the doctrine of chances. Contributed by Mr. Price, Philos. Trans. R. Soc. Lond. 53, 370–418 (1763).Google Scholar
  5. 5.
    Cox, R.T.: Probability, Frequency and Reasonable Expectation. Am. J. Phys. 17, 1–13 (1946)ADSCrossRefGoogle Scholar
  6. 6.
    Cox, R.T.: Algebra of Probable Inference. The Johns Hopkins University Press, Baltimore (2001)Google Scholar
  7. 7.
    Jeffreys, H.: Scientific Inference. Cambridge University Press, Cambridge (1931)Google Scholar
  8. 8.
    Jeffreys, H.: Theory of Probability, 2nd edn. Clarendon Press, Oxford (1948)MATHGoogle Scholar
  9. 9.
    Polya, G.: Mathematics and Plausible Reasoning, Vol. I and II. Princeton University Press, Princeton (1954)Google Scholar
  10. 10.
    Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  11. 11.
    Caves, C.M., Fuchs, C.A., Schack, R.: Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fuchs, C.A., Schack, R.: A quantum-Bayesian route to quantum state space. Found. Phys. 41, 345–356 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    von Baeyer, H.C.: Quantum Weirdness? It’s all in your mind. Sci. Am. 308, 46–51 (2013)CrossRefGoogle Scholar
  14. 14.
    Curzon, F.L., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    Bizarro, J.P.S.: Entropy production in irreversible processes with friction. Phys. Rev. E 78, 021137 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Bizarro, J.P.S.: The thermodynamic efficiency of heat engines with friction. Am. J. Phys. 80, 298–305 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Angulo-Brown, F., Fernndez-Betanzos, J., Daz-Pico, C.A.: Compression ratio of an optimized air standard Otto-cycle model. Eur. J. Phys. 15, 38 (1994)CrossRefGoogle Scholar
  18. 18.
    Gordon, J.M.: Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration. Am. J. Phys. 59, 551–555 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    Ondrechen, M.J., Andresen, B., Mozurkewich, M., Berry, R.S.: Maximum work from a finite reservoir by sequential Carnot cycles. Am. J. Phys. 49, 681–685 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    Leff, H.S.: Available work from a finite source and sink: how effective is a Maxwell’s demon. Am. J. Phys. 55, 701–705 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    Jaynes, E.T.: Information theory and statistical mechanics. In: Ford, W.K. (ed.) Statistical Physics (1962 Brandeis Lectures), Benjamin, New York (1963)Google Scholar
  22. 22.
    Keizer, J.: Statistical Thermodynamics of Non-equilibrium Processes. Springer, New York (1987)CrossRefGoogle Scholar
  23. 23.
    Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, Hoboken (1985)MATHGoogle Scholar
  24. 24.
    Zemansky, M.W., Dittman, R.H.: Heat and Thermodynamics: an Intermediate Textbook, 7th edn. McGraw-Hill, New York (1997)Google Scholar
  25. 25.
    Johal, R.S.: Universal efficiency at optimal work with Bayesian statistics. Phys. Rev. E 82, 061113 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Thomas, G., Johal, R.S.: Expected behavior of quantum thermodynamic machines with prior information. Phys. Rev. E 85, 041146 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Aneja, P., Johal, R.S.: Prior probabilities and thermal characteristics of heat engines. In: Proceedings of Sigma-Phi International Conference on Statistical Physics-2011, Cent. Eur. J. Phys. 10 (3), pp. 708–714 (2012).Google Scholar
  28. 28.
    Thomas, G., Aneja, P., Johal, R.S.: Informative priors and the analogy between quantum and classical heat engines. In: Proceedings of International Conference on Frontiers of Quantum and Mesoscopic Thermodynamics-2011, Phys. Scr. T151, p. 014031 (2012).Google Scholar
  29. 29.
    Aneja, P., Johal, R.S.: Prior information and inference of optimality in thermodynamic processes. J. Phys. A Math. Theor. 46, 365002 (2013)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Reif, F.: Fundamentals of Statistical and Thermal Physics, Problem 5.23. McGraw-Hill, New York (1981)Google Scholar
  31. 31.
    De Vos, A.: Efficiency of some heat engines at maximum power conditions. Amer. J. Phys. 53, 570–573 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    Van den Broeck, C.: Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005)CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Lin, B.H., Chen, J.C.: Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine. Eur. Phys. J. B 53, 481–485 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Barato, A.C., Seifert, U.: An autonomous and reversible Maxwell’s demon. Europhys. Lett. 101, 60001 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Jaynes, E.T.: The Evolution of Carnot’s principle. In: Erickson, G.J., Smith, C.R. (eds.) Maximum-Entropy and Bayesian Methods in Science and Engineering, 1. Kluwer, Dordrecht (1988)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ramandeep S. Johal
    • 1
  • Renuka Rai
    • 2
  • Günter Mahler
    • 3
  1. 1.Department of Physical SciencesIndian Institute of Science Education and Research MohaliManauliIndia
  2. 2.Department of Applied SciencesUniversity Institute of Engineering and Technology, Panjab UniversityChandigarhIndia
  3. 3.1. Institut für Theoretische PhysikUniversität StuttgartStuttgartGermany

Personalised recommendations