# Probing the Vacuum of Particle Physics with Precise Laser Interferometry

- 165 Downloads
- 2 Citations

## Abstract

The discovery of the Higgs boson at LHC confirms that what we experience as empty space should actually be thought as a condensate of elementary quanta. This condensate characterizes the physically realized form of relativity and could play the role of preferred reference frame in a modern Lorentzian approach. This observation suggests a new interpretative scheme to understand the unexplained residuals in the old ether-drift experiments where light was still propagating in gaseous systems. Differently from present vacuum experiments, where anyhow deviations from Special Relativity are expected to be at the limit of visibility, these now acquire a crucial importance and become consistent with the Earth’s velocity of 370 km/s which characterizes the CMB anisotropy. In the same scheme, one can also understand the difference with the other experiments where light propagates in strongly bound systems such as solid or liquid transparent media. This non-trivial level of consistency motivates a new generation of precise laser interferometry experiments which explore the same particle physics vacuum and, in this sense, are complementary to those with high-energy accelerators.

## Keywords

Lorentz invariant vacuum Laser interferometry CMB anisotropy## References

- 1.’t Hooft, G.: Search of the Ultimate Building Blocks. Cambridge University Press, Cambridge (1997)Google Scholar
- 2.Consoli, M., Stevenson, P.M.: Physical mechanisms generating spontaneous symmetry breaking and a hierarchy of scales. Int. J. Mod. Phys.
**A15**, 133 (2000)ADSGoogle Scholar - 3.Volovik, G.E.: Superfluid analogies of cosmological phenomena. Phys. Rep.
**351**, 195 (2001)ADSCrossRefMathSciNetzbMATHGoogle Scholar - 4.Consoli, M., Pagano, A., Pappalardo, L.: Vacuum condensates and ether-drift experiments. Phys. Lett.
**A318**, 292 (2003)ADSCrossRefGoogle Scholar - 5.Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. W. A. Benjamin, New York (1964)zbMATHGoogle Scholar
- 6.Consoli, M., Costanzo, E.: Is the physical vacuum a preferred frame? Eur. Phys. J.
**C54**, 285 (2008)ADSCrossRefGoogle Scholar - 7.Consoli, M., Costanzo, E.: Precision tests with a new class of dedicated ether-drift experiments. Eur. Phys. J.
**C55**, 469 (2008)ADSCrossRefGoogle Scholar - 8.Consoli, M., Matheson, C., Pluchino, A.: The classical ether-drift experiments: a modern re-interpretation. Eur. Phys. J. Plus
**128**, 71 (2013)CrossRefGoogle Scholar - 9.Zeldovich, Y.B.: The cosmological constant and the theory of elementary particles. Sov. Phys. Usp.
**11**, 381 (1968)ADSCrossRefGoogle Scholar - 10.Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys.
**61**, 1 (1989)ADSCrossRefMathSciNetzbMATHGoogle Scholar - 11.Barcelo, C., Liberati, S., Visser, M.: Analog gravity from field theory normal modes? Class. Quantum Grav.
**18**, 3595 (2001)ADSCrossRefMathSciNetzbMATHGoogle Scholar - 12.Visser, M., Barcelo, C., Liberati, S.: Analogue models of and for gravity. Gen. Relat. Gravit.
**34**, 1719 (2002)CrossRefMathSciNetzbMATHGoogle Scholar - 13.Consoli, M.: Ultraweak excitations of the quantum vacuum as physical models of gravity. Class. Quantum Gravity
**26**, 225008 (2009)ADSCrossRefMathSciNetGoogle Scholar - 14.Jannes, G., Volovik, G.E.: The cosmological constant: a lesson from the effective gravity of topological Weyl media. JETP Lett.
**96**, 215 (2012)ADSCrossRefGoogle Scholar - 15.Finazzi, S., Liberati, S., Sindoni, L.: Cosmological constant: a lesson from Bose–Einstein condensates. Phys. Rev. Lett.
**108**, 071101 (2012)ADSCrossRefGoogle Scholar - 16.Leggett, A.J.: Quantum Liquids, p. 102. Oxford University Press, New York (2006)CrossRefGoogle Scholar
- 17.Müller, H., et al.: Precision test of the isotropy of light propagation. Appl. Phys. B
**77**, 719 (2003)ADSCrossRefGoogle Scholar - 18.Hughes, V.W., Robinson, H.G., Beltran-Lopez, V.: Upper limit for the anisotropy of inertial mass from nuclear resonance experiments. Phys. Rev. Lett.
**4**, 342 (1960)ADSCrossRefGoogle Scholar - 19.Drever, R.W.P.: A search for anisotropy of inertial mass using a free precession technique. Philos. Mag.
**6**, 683 (1961)ADSCrossRefGoogle Scholar - 20.Will, C.M.: The confrontation between general relativity and experiment. arXiv:gr-qc/0510072
- 21.Consoli, M., Costanzo, E.: From classical to modern ether-drift experiments: the narrow window for a preferred frame. Phys. Lett.
**A333**, 355 (2004)ADSCrossRefGoogle Scholar - 22.Consoli, M., Costanzo, E.: Old and new ether-drift experiments: a sharp test for a preferred frame. N. Cim.
**119B**, 393 (2004)ADSGoogle Scholar - 23.Shamir, J., Fox, R.: A new experimental test of special relativity. N. Cim.
**62B**, 258 (1969)ADSCrossRefGoogle Scholar - 24.Hicks, W.M.: On the Michelson Morley experiment relating to the drift of ether. Philos. Mag.
**3**, 9 (1902)CrossRefzbMATHGoogle Scholar - 25.Miller, D.C.: The ether-drift experiment and the determination of the absolute motion of the earth. Rev. Mod. Phys.
**5**, 203 (1933)ADSCrossRefzbMATHGoogle Scholar - 26.Nassau, J.J., Morse, P.M.: A study of solar motion by harmonic analysis. Astrophys. J.
**65**, 73 (1927)ADSCrossRefGoogle Scholar - 27.Herrmann, S., et al.: Test of the isotropy of the speed of light using a continuously rotating optical resonator. Phys. Rev. Lett.
**95**, 150401 (2005)ADSCrossRefGoogle Scholar - 28.Troshkin, O.V.: Wave properties of a turbulent fluid. Physica
**A168**, 881 (1990)ADSCrossRefGoogle Scholar - 29.Puthoff, H.E.: Linearized turbulent flow as an analog model for linearized general relativity. arXiv:0808.3404
- 30.Tsankov, T.D.: Classical electrodynamics and the turbulent Aether hypothesis (2009)Google Scholar
- 31.Consoli, M., Pluchino, A., Rapisarda, A.: Basic randomness of nature and ether-drift experiments. Chaos, Solitons Fractals
**44**, 1089 (2011)ADSCrossRefGoogle Scholar - 32.Consoli, M.: A kinetic basis for space-time symmetries. Phys. Lett. A
**376**, 3377 (2012)ADSCrossRefGoogle Scholar - 33.Consoli, M., Pluchino, A., Rapisarda, A., Tudisco, S.: The vacuum as a form of turbulent fluid: motivations, experiments, implications. Physica
**A394**, 61 (2014)ADSCrossRefGoogle Scholar - 34.Kolmogorov, A.N.: Dokl. Akad. Nauk SSSR
**10**, 4 (1940), English translation: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc.**434**, 9 (1991)Google Scholar - 35.Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Chapt. III. Pergamon Press, London (1959)Google Scholar
- 36.Fung, J.C.H., et al.: Kinematical simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech.
**236**, 281 (1992)ADSCrossRefMathSciNetzbMATHGoogle Scholar - 37.Joos, G.: Die Jenaer Wiederholung des Michelsonversuchs. Ann. d. Phys.
**7**, 385 (1930)ADSCrossRefGoogle Scholar - 38.Jaseja, T.S., et al.: Test of special relativity or of the isotropy of space by use of infrared masers. Phys. Rev.
**133**, A1221 (1964)ADSCrossRefGoogle Scholar - 39.Brillet, A., Hall, J.L.: Improved laser test of the isotropy of space. Phys. Rev. Lett.
**42**, 549 (1979)ADSCrossRefGoogle Scholar - 40.Herrmann, S., et al.: Rotating optical cavity experiment testing Lorentz invariance at the \(10^{-17}\) level. Phys. Rev. D
**80**, 105011 (2009)ADSCrossRefGoogle Scholar - 41.Eisele, Ch., Newski, A., Schiller, S.: Laboratory test of the isotropy of light propagation at the \(10^{-17}\) level. Phys. Rev. Lett.
**103**, 090401 (2009)ADSCrossRefGoogle Scholar - 42.Müller, H., et al.: Modern Michelson–Morley experiment using cryogenic optical resonators. Phys. Rev. Lett.
**91**, 020401 (2003)CrossRefGoogle Scholar - 43.Antonini, P., Okhapkin, M., Göklu, S., Schiller, S.: Test of constancy of speed of light with rotating cryogenic optical resonators. Phys. Rev.
**A71**, 050101(R) (2005)ADSCrossRefGoogle Scholar - 44.Consoli, M., Pappalardo, L.: Emergent gravity and ether-drift experiments. Gen. Relat. Gravit.
**42**, 2585 (2010)ADSCrossRefMathSciNetzbMATHGoogle Scholar - 45.Shankland, R.S., et al.: New analysis of the interferometer observations of Dayton C. Miller. Rev. Mod. Phys.
**27**, 167 (1955)ADSCrossRefGoogle Scholar - 46.Colladay, D., Kostelecky, V.A.: CPT violation and the standard model. Phys. Rev. D
**55**, 6760 (1997)ADSCrossRefGoogle Scholar - 47.Kostelecky, V.A., Mewes, M.: Signals for Lorentz violation in electrodynamics. Phys. Rev. D
**66**, 056005 (2002)ADSCrossRefGoogle Scholar - 48.Kostelecky, V.A., Russell, N.: Data tables for Lorentz and CPT violation. Rev. Mod. Phys.
**83**, 11 (2011)ADSCrossRefGoogle Scholar - 49.Müller, H.: Testing Lorentz invariance by the use of vacuum and matter filled cavity resonators. Phys. Rev. D
**71**, 045004 (2005)ADSCrossRefGoogle Scholar - 50.Eisele, Ch., et al.: A crossed optical cavities apparatus for a precision measurement of the isotropy of light propagation. Opt. Commun.
**281**, 1189 (2008)ADSCrossRefGoogle Scholar - 51.De Abreu, R., Guerra, V.: Relativity-Einstein’s lost frame. Extra-Muros, Lisboa (2005)Google Scholar