Foundations of Physics

, Volume 45, Issue 1, pp 22–43 | Cite as

Probing the Vacuum of Particle Physics with Precise Laser Interferometry

Article

Abstract

The discovery of the Higgs boson at LHC confirms that what we experience as empty space should actually be thought as a condensate of elementary quanta. This condensate characterizes the physically realized form of relativity and could play the role of preferred reference frame in a modern Lorentzian approach. This observation suggests a new interpretative scheme to understand the unexplained residuals in the old ether-drift experiments where light was still propagating in gaseous systems. Differently from present vacuum experiments, where anyhow deviations from Special Relativity are expected to be at the limit of visibility, these now acquire a crucial importance and become consistent with the Earth’s velocity of 370 km/s which characterizes the CMB anisotropy. In the same scheme, one can also understand the difference with the other experiments where light propagates in strongly bound systems such as solid or liquid transparent media. This non-trivial level of consistency motivates a new generation of precise laser interferometry experiments which explore the same particle physics vacuum and, in this sense, are complementary to those with high-energy accelerators.

Keywords

Lorentz invariant vacuum Laser interferometry CMB anisotropy 

References

  1. 1.
    ’t Hooft, G.: Search of the Ultimate Building Blocks. Cambridge University Press, Cambridge (1997)Google Scholar
  2. 2.
    Consoli, M., Stevenson, P.M.: Physical mechanisms generating spontaneous symmetry breaking and a hierarchy of scales. Int. J. Mod. Phys. A15, 133 (2000)ADSGoogle Scholar
  3. 3.
    Volovik, G.E.: Superfluid analogies of cosmological phenomena. Phys. Rep. 351, 195 (2001)ADSCrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Consoli, M., Pagano, A., Pappalardo, L.: Vacuum condensates and ether-drift experiments. Phys. Lett. A318, 292 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. W. A. Benjamin, New York (1964)MATHGoogle Scholar
  6. 6.
    Consoli, M., Costanzo, E.: Is the physical vacuum a preferred frame? Eur. Phys. J. C54, 285 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Consoli, M., Costanzo, E.: Precision tests with a new class of dedicated ether-drift experiments. Eur. Phys. J. C55, 469 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Consoli, M., Matheson, C., Pluchino, A.: The classical ether-drift experiments: a modern re-interpretation. Eur. Phys. J. Plus 128, 71 (2013)CrossRefGoogle Scholar
  9. 9.
    Zeldovich, Y.B.: The cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 11, 381 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Barcelo, C., Liberati, S., Visser, M.: Analog gravity from field theory normal modes? Class. Quantum Grav. 18, 3595 (2001)ADSCrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Visser, M., Barcelo, C., Liberati, S.: Analogue models of and for gravity. Gen. Relat. Gravit. 34, 1719 (2002)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Consoli, M.: Ultraweak excitations of the quantum vacuum as physical models of gravity. Class. Quantum Gravity 26, 225008 (2009)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jannes, G., Volovik, G.E.: The cosmological constant: a lesson from the effective gravity of topological Weyl media. JETP Lett. 96, 215 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Finazzi, S., Liberati, S., Sindoni, L.: Cosmological constant: a lesson from Bose–Einstein condensates. Phys. Rev. Lett. 108, 071101 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Leggett, A.J.: Quantum Liquids, p. 102. Oxford University Press, New York (2006)CrossRefGoogle Scholar
  17. 17.
    Müller, H., et al.: Precision test of the isotropy of light propagation. Appl. Phys. B 77, 719 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Hughes, V.W., Robinson, H.G., Beltran-Lopez, V.: Upper limit for the anisotropy of inertial mass from nuclear resonance experiments. Phys. Rev. Lett. 4, 342 (1960)ADSCrossRefGoogle Scholar
  19. 19.
    Drever, R.W.P.: A search for anisotropy of inertial mass using a free precession technique. Philos. Mag. 6, 683 (1961)ADSCrossRefGoogle Scholar
  20. 20.
    Will, C.M.: The confrontation between general relativity and experiment. arXiv:gr-qc/0510072
  21. 21.
    Consoli, M., Costanzo, E.: From classical to modern ether-drift experiments: the narrow window for a preferred frame. Phys. Lett. A333, 355 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Consoli, M., Costanzo, E.: Old and new ether-drift experiments: a sharp test for a preferred frame. N. Cim. 119B, 393 (2004)ADSGoogle Scholar
  23. 23.
    Shamir, J., Fox, R.: A new experimental test of special relativity. N. Cim. 62B, 258 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    Hicks, W.M.: On the Michelson Morley experiment relating to the drift of ether. Philos. Mag. 3, 9 (1902)CrossRefMATHGoogle Scholar
  25. 25.
    Miller, D.C.: The ether-drift experiment and the determination of the absolute motion of the earth. Rev. Mod. Phys. 5, 203 (1933)ADSCrossRefMATHGoogle Scholar
  26. 26.
    Nassau, J.J., Morse, P.M.: A study of solar motion by harmonic analysis. Astrophys. J. 65, 73 (1927)ADSCrossRefGoogle Scholar
  27. 27.
    Herrmann, S., et al.: Test of the isotropy of the speed of light using a continuously rotating optical resonator. Phys. Rev. Lett. 95, 150401 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Troshkin, O.V.: Wave properties of a turbulent fluid. Physica A168, 881 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    Puthoff, H.E.: Linearized turbulent flow as an analog model for linearized general relativity. arXiv:0808.3404
  30. 30.
    Tsankov, T.D.: Classical electrodynamics and the turbulent Aether hypothesis (2009)Google Scholar
  31. 31.
    Consoli, M., Pluchino, A., Rapisarda, A.: Basic randomness of nature and ether-drift experiments. Chaos, Solitons Fractals 44, 1089 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Consoli, M.: A kinetic basis for space-time symmetries. Phys. Lett. A 376, 3377 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Consoli, M., Pluchino, A., Rapisarda, A., Tudisco, S.: The vacuum as a form of turbulent fluid: motivations, experiments, implications. Physica A394, 61 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Kolmogorov, A.N.: Dokl. Akad. Nauk SSSR 10, 4 (1940), English translation: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. 434, 9 (1991)Google Scholar
  35. 35.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Chapt. III. Pergamon Press, London (1959)Google Scholar
  36. 36.
    Fung, J.C.H., et al.: Kinematical simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236, 281 (1992)ADSCrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    Joos, G.: Die Jenaer Wiederholung des Michelsonversuchs. Ann. d. Phys. 7, 385 (1930)ADSCrossRefGoogle Scholar
  38. 38.
    Jaseja, T.S., et al.: Test of special relativity or of the isotropy of space by use of infrared masers. Phys. Rev. 133, A1221 (1964)ADSCrossRefGoogle Scholar
  39. 39.
    Brillet, A., Hall, J.L.: Improved laser test of the isotropy of space. Phys. Rev. Lett. 42, 549 (1979)ADSCrossRefGoogle Scholar
  40. 40.
    Herrmann, S., et al.: Rotating optical cavity experiment testing Lorentz invariance at the \(10^{-17}\) level. Phys. Rev. D 80, 105011 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Eisele, Ch., Newski, A., Schiller, S.: Laboratory test of the isotropy of light propagation at the \(10^{-17}\) level. Phys. Rev. Lett. 103, 090401 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Müller, H., et al.: Modern Michelson–Morley experiment using cryogenic optical resonators. Phys. Rev. Lett. 91, 020401 (2003)CrossRefGoogle Scholar
  43. 43.
    Antonini, P., Okhapkin, M., Göklu, S., Schiller, S.: Test of constancy of speed of light with rotating cryogenic optical resonators. Phys. Rev. A71, 050101(R) (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Consoli, M., Pappalardo, L.: Emergent gravity and ether-drift experiments. Gen. Relat. Gravit. 42, 2585 (2010)ADSCrossRefMathSciNetMATHGoogle Scholar
  45. 45.
    Shankland, R.S., et al.: New analysis of the interferometer observations of Dayton C. Miller. Rev. Mod. Phys. 27, 167 (1955)ADSCrossRefGoogle Scholar
  46. 46.
    Colladay, D., Kostelecky, V.A.: CPT violation and the standard model. Phys. Rev. D 55, 6760 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    Kostelecky, V.A., Mewes, M.: Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    Kostelecky, V.A., Russell, N.: Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Müller, H.: Testing Lorentz invariance by the use of vacuum and matter filled cavity resonators. Phys. Rev. D 71, 045004 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    Eisele, Ch., et al.: A crossed optical cavities apparatus for a precision measurement of the isotropy of light propagation. Opt. Commun. 281, 1189 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    De Abreu, R., Guerra, V.: Relativity-Einstein’s lost frame. Extra-Muros, Lisboa (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Istituto Nazionale di Fisica Nucleare, Sezione di CataniaCataniaItaly

Personalised recommendations