Foundations of Physics

, Volume 45, Issue 1, pp 44–61 | Cite as

Localized Fermions on Superconducting Domain Walls and Extended Supersymmetry with Non-trivial Topological Charges

Article
  • 68 Downloads

Abstract

In this letter we demonstrate that the fermionic zero modes on a superconducting domain wall can be associated to an one dimensional \(N=6\) supersymmetry that contains non-trivial topological charges. In addition, the system also possesses three distinct \(N=4\) supersymmetries with non-trivial topological charges and we also study some duality transformations of the supersymmetric algebras.

Keywords

Supersymmetric quantum mechanics One dimensional supersymmetries Domain wall fermions Localized fermions 

References

  1. 1.
    Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (2000)Google Scholar
  2. 2.
    Lazarides, G., Shafi, Q.: Superconducting membranes. Phys. Lett. B 159, 261 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    Kibble, T.W.B., Lazarides, G., Shafi, Q.: Walls bounded by strings. Phys. Rev. D 26, 435 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    Kibble, T.W.B., Lazarides, G., Shafi, Q.: Strings in SO (10). Phys. Lett. B 113, 237 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    Morris, J.R.: Superconducting domain walls from a supersymmetric action. Phys. Rev. D 52, 1096 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Stojkovic, D.: Fermionic zero modes on domain walls. Phys. Rev. D 63, 025010 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Stojkovic, Dejan: Neutrino zero modes and stability of electroweak strings, fermionic zero modes on domain walls. Int. J. Mod. Phys. A 16, 1034 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Sebastiani, L., Zerbini, S.: A class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 77, 046009 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Astashenok, A. V., Capozziello, S., Odintsov, S. D.: Further stable neutron star models from f(R) gravity, arXiv:1309.1978.
  12. 12.
    Farajollahi, H., Sadeghi, J., Pourali, M.: Stability analysis of holographic dark energy in Brans-Dicke cosmology. Astrophys. Space Sci. 341, 695 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Khurshudyan, M., Kahya, E.O., Pasqua, A., Pourhassan, B.: Higher derivative corrections of f(R) gravity with varying equation of state in the case of variable G and \(\Lambda \), arXiv:1401.6630.
  14. 14.
    Oikonomou, V.K.: Localized fermions on domain walls and extended supersymmetric quantum mechanics. Class. Quantum Gravity 31, 025018 (2014)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    de Crombrugghe, M., Rittenberg, V.: Supersymmetric quantum mechanics. Ann. Phys. 151, 99 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    Sukumar, C.V.: Supersymmetric quantum mechanics of one-dimensional systems. J. Phys. A 18, 2917 (1985)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Cooper, F., Freedman, B.: Aspects of supersymmetric quantum mechanics. Ann. Phys. 146, 262 (1983)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Henneaux, M., Teitelboim, C.: Relativistic quantum mechanics of supersymmetric particles. Ann. Phys. 143, 127 (1982)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Cooper, F., Ginocchio, J.N.: Relationship between supersymmetry and solvable potentials. Phys. Rev. D 36, 2458 (1987)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Junker, G.: Supersymmetric Methods in Quantum and Statistical Physics. Springer, New York (1996)CrossRefMATHGoogle Scholar
  22. 22.
    Ruan, D., Tu, C.C., Sun, H.Z.: Supersymmetric quantum mechanics in d-dimensional space. Commun. Theor. Phys. 32, 477 (1999)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Spector, D.: BPS and duality in supersymmetric quantum mechanics. Int. J. Mod. Phys. A 20, 6288 (2005)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Quesne, C.: Fractional supersymmetric quantum mechanics. Mod. Phys. Lett. A 18, 515 (2003)ADSCrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Bagchi, B., Mallik, S., Quesne, C.: Generating complex potentials with real eigenvalues in supersymmetric quantum mechanics. Int. J. Mod. Phys. A 16, 2859 (2001)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tkach, V.I., Pashnev, A.I., Rosales, J.J.: On the Schrodinger equation with time and its square root representation in the supersymmetric quantum mechanics. Mod. Phys. Lett. A 15, 1557 (2000)ADSCrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Plyushchay,M.S., Wipf, A.: Particle in a self-dual dyon background: hidden free nature, and exotic superconformal symmetry, arXiv:1311.2195.
  28. 28.
    Arancibia, A., Plyushchay, M.S.: Effect of scalings and translations on the supersymmetric quantum mechanical structure of soliton systems, arXiv:1401.6709.
  29. 29.
    Arancibia, A., Guilarte, J.M., Plyushchay, M.S.: Phys. Rev. D 88, 085034 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Arancibia, A., Guilarte, J.M., Plyushchay, M.S.: Effect of scalings and translations on the supersymmetric quantum mechanical structure of soliton systems. Phys. Rev. D 87, 045009 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Izquierdo, A.A., Guilarte, J.M., Plyushchay, M.S.: Kink mass quantum shifts from SUSY quantum mechanics. Ann. Phys. 331, 269 (2013)ADSCrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Plyushchay, M.S., Arancibia, A., Nieto, L.M.: Exotic supersymmetry of the kink-antikink crystal, and the infinite period limit. Phys. Rev. D 83, 065025 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Arancibia, A., Plyushchay, M.S.: Extended supersymmetry of the self-isospectral crystalline and soliton chains. Phys. Rev. D 85, 045018 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Correa, F., Jakubsky, V., Nieto, L.M., Plyushchay, M.S.: Self-isospectrality, special supersymmetry, and their effect on the band structure. Phys. Rev. Lett. 101, 030403 (2008)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    Correa, F., Jakubsky, V., Plyushchay, M.S.: Finite-gap systems, tri-supersymmetry and self-isospectrality. J. Phys. A 41, 485303 (2008)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Correa, F., Jakubsky, V., Plyushchay, M.S.: Aharonov-Bohm effect on AdS(2) and nonlinear supersymmetry of reflectionless Poschl-Teller system. Ann. Phys. 324, 1078 (2009)ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    Correa, F., Nieto, L.M., Plyushchay, M.S.: Hidden nonlinear \(su(2|2)\) superunitary symmetry of N=2 superextended 1D Dirac delta potential problem. Phys. Lett. B 659, 746 (2008)ADSCrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    Berezovoi, V.P., Pashnev, A.I.: N=2 supersymmetric quantum mechanics and the inverse scattering problem. Theor. Math. Phys. 74, 264 (1988)CrossRefGoogle Scholar
  39. 39.
    Berezovoi, V.P., Pashnev, A.I.: N=2 supersymmetric quantum mechanics and the inverse scattering problem. Teor. Mat. Fiz. 74, 392 (1988)CrossRefGoogle Scholar
  40. 40.
    Witten, E.: Is supersymmetry really broken? Int. J. Mod. Phys. A 10, 1247 (1995)ADSCrossRefMathSciNetMATHGoogle Scholar
  41. 41.
    Delduc, F., Ivanov, E.A.: N = 4 mechanics of general (4, 4, 0) multiplets. Nucl. Phys. B 855, 815 (2012)ADSCrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    Delduc, F., Kalitzin, S., Sokatchev, E.: Geometry of s models with heterotic sypersymmetry. Class. Quantum Gravity 7, 1567 (1990)ADSCrossRefMathSciNetMATHGoogle Scholar
  43. 43.
    Ivanov, E., Lechtenfeld, O., Sutulin, A.: Hierarchy of N=8 mechanics models. Nucl. Phys. B 790, 493 (2008)ADSCrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    Kuznetsova, Z., Toppan, F.: Decomposition and oxidation of the N-extended supersymmetric quantum mechanics multiplets. Int. J. Mod. Phys. A 23, 3947 (2008)ADSCrossRefMathSciNetMATHGoogle Scholar
  45. 45.
    Witten, E.: Dynamical breaking of supersymmetry, soft supersymmetry breaking in KKLT flux compactification. Nucl. Phys. B 188, 513 (1981)ADSCrossRefMATHGoogle Scholar
  46. 46.
    Choi, K., Falkowski, A., Nilles, H.P., Olechowski, M.: Soft supersymmetry breaking in KKLT flux compactification. Nucl. Phys. B 718, 113 (2005)ADSCrossRefMathSciNetMATHGoogle Scholar
  47. 47.
    Odintsov, S.D., Shapiro, I.L.: Asymptotical finiteness and asymptotical supersymmetry in grand unification theories. Mod. Phys. Lett. A 4, 1479 (1989)ADSCrossRefGoogle Scholar
  48. 48.
    Nelson, A.E., Seiberg, N.: R symmetry breaking versus supersymmetry breaking. Nucl. Phys. B 416, 46 (1994)ADSCrossRefMathSciNetMATHGoogle Scholar
  49. 49.
    Intriligator, K.A., Seiberg, N., Shih, D.: Supersymmetry breaking, R-symmetry breaking and metastable vacua. JHEP 2007(07), 017 (2007)ADSCrossRefMathSciNetGoogle Scholar
  50. 50.
    Intriligator, K.A., Seiberg, N.: Lectures on supersymmetry breaking. Class. Quantum Gravity 24, S741–S772 (2007)ADSCrossRefMathSciNetMATHGoogle Scholar
  51. 51.
    Intriligator, K.A., Seiberg, N., Shih, D.: Dynamical SUSY breaking in meta-stable vacua. JHEP 2006(04), 021 (2006)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Aharony, O., Hanany, A., Intriligator, K.A., Seiberg, N., Strassler, M.J.: Aspects of N=2 supersymmetric gauge theories in three-dimensions. Nucl. Phys. B 499, 67 (1997)ADSCrossRefMathSciNetMATHGoogle Scholar
  53. 53.
    Buchbinder, I.L., Odintsov, S.D.: Spontaneous supersymmetry breaking and effective action in supersymmetrical Kaluza-Klein theories and strings. Int. J. Mod. Phys. A 4, 4337 (1989)ADSCrossRefMathSciNetGoogle Scholar
  54. 54.
    Intriligator, K.A., Thomas, S.D.: Dynamical supersymmetry breaking on quantum moduli spaces. Nucl. Phys. B 473, 121 (1996)ADSCrossRefMathSciNetMATHGoogle Scholar
  55. 55.
    de la Cruz, F.A., Rosales, J.J., Tkach, V.I., Torres, J.A.: SUSY cosmological models. Gravit. Cosmol. 8, 101 (2002)ADSMathSciNetMATHGoogle Scholar
  56. 56.
    Odintsov, S.D.: Casimir effect in multidimensional quantum supergravities and supersymmetry breaking. Mod. Phys. Lett. A 3, 1391 (1988)ADSCrossRefMathSciNetGoogle Scholar
  57. 57.
    Wittem, E., Olive, D.: Supersymmetry algebras that include topological charges. Phys. Lett. B 78, 97 (1978)ADSCrossRefGoogle Scholar
  58. 58.
    Fayet, P.: Spontaneous generation of massive multiplets and central charges in extended supersymmetric theories. Nucl. Phys. B 149, 137 (1979)ADSCrossRefMathSciNetGoogle Scholar
  59. 59.
    Shizuya, K.: Topological-charge anomalies in supersymmetric theories with domain walls. Phys. Rev. D 70, 065003 (2004)ADSCrossRefMathSciNetGoogle Scholar
  60. 60.
    Gaida, I.: Extended supersymmetry with gauged central charge. Phys. Lett. B 373, 89 (1996)ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    Kamimura, K., Sakaguchi, M.: \(osp(1|32)\) and extensions of superAdS(5) x \(S^5\) algebra. Nucl. Phys. B 662, 491 (2003)ADSCrossRefMathSciNetMATHGoogle Scholar
  62. 62.
    Toppan, F.: On the irreps of the N-extended supersymmetric quantum mechanics and their fusion graphs, arXiv:hep-th/0612276.
  63. 63.
    Pashnev, A., Toppan, F.: On the classification of N extended supersymmetric quantum mechanical systems. J. Math. Phys. 42, 5257 (2001)ADSCrossRefMathSciNetMATHGoogle Scholar
  64. 64.
    Kuznetsova, Z., Rojas, M., Toppan, F.: Classification of irreps and invariants of the N-extended supersymmetric quantum mechanics. JHEP 0603, 098 (2006)ADSCrossRefMathSciNetGoogle Scholar
  65. 65.
    Kuznetsova, Z., Toppan, F.: Refining the classification of the irreps of the 1D N-extended supersymmetry. Mod. Phys. Lett. A 23, 37 (2008)ADSCrossRefMathSciNetMATHGoogle Scholar
  66. 66.
    Oikonomou, V.K.: Work in ProgressGoogle Scholar
  67. 67.
    Semenoff, G.W., Semenoff, V., Zhou, F.: Domain walls in gapped graphene. Phys. Rev. Lett. 101, 087204 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    Ghaemi, P., Wilczek, F.: Near-zero modes in superconducting graphene. Phys. Scr. T146, 014019 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    Rossi, P.: Fermion zero modes and hidden symmetry. Phys. Lett. B 71, 145 (1977)ADSCrossRefMathSciNetGoogle Scholar
  70. 70.
    Zhou, X.N., Du, X.L., Yang, K., Liu, Y.X.: Dirac dynamical resonance states around Schwarzschild black holes, arXiv:1308.2863.
  71. 71.
    Liu, Y.X., Zhao, L., Zhang, X.H., Duan, Y.S.: Fermions in self-dual vortex background on a string-like defect. Nucl. Phys. B 785, 234 (2007)ADSCrossRefMathSciNetMATHGoogle Scholar
  72. 72.
    Sadeghi, J., Pourhassan, B., Jafarzadeh, K., Reisi, E., Rostami, M.: Massless fermion quasinormal modes in the Horava-Lifshitz background. Can. J. Phys. 91, 251 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    Oikonomou, V.K.: Supersymmetric Chern-Simons vortex systems and extended supersymmetric quantum mechanics algebras. Nucl. Phys. B 870, 477 (2013)ADSCrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnological Education Institute of SerresSerresGreece
  2. 2.Department of Theoretical PhysicsAristotle University of ThessalonikiThessaloníkiGreece

Personalised recommendations