Foundations of Physics

, Volume 45, Issue 1, pp 75–103 | Cite as

Unifying Geometrical Representations of Gauge Theory

Article

Abstract

We unify three approaches within the vast body of gauge-theory research that have independently developed distinct representations of a geometrical surface-like structure underlying the vector-potential. The three approaches that we unify are: those who use the compactified dimensions of Kaluza–Klein theory, those who use Grassmannian models (also called gauge theory embedding or \(CP^{N-1}\) models) to represent gauge fields, and those who use a hidden spatial metric to replace the gauge fields. In this paper we identify a correspondence between the geometrical representations of the three schools. Each school was mostly independently developed, does not compete with other schools, and attempts to isolate the gauge-invariant geometrical surface-like structures that are responsible for the resulting physics. By providing a mapping between geometrical representations, we hope physicists can now isolate representation-dependent physics from gauge-invariant physical results and share results between each school. We provide visual examples of the geometrical relationships between each school for \(U(1)\) electric and magnetic fields. We highlight a first new result: in all three representations a static electric field (electric field from a fixed ring of charge or a sphere of charge) has a hidden gauge-invariant time dependent surface that is underlying the vector potential.

Keywords

Kaluza Klein Gauge field theory: composite Field theoretical model: \(CP^{N-1}\) Gauge geometry embedding Grassmannian models Hidden-spatial geometry 

References

  1. 1.
    Alekseevsky, D.V., Cortes, V., Devchand, C.: Yang–Mills connections over manifolds with Grassmann structure. J. Math. Phys. 44, 6047–6076 (2003). doi:10.1063/1.1622999 ADSCrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Atiyah, M., Hitchin, N., Drinfeld, V., Manin, Y.: Construction of instantons. Phys. Lett. A 65(3), 185–187 (1978). doi:10.1016/0375-9601(78)90141-X
  3. 3.
    Atiyah, M.F.: Geometry of Yang–Mills Fields (Lezioni Fermiane). Sc. Norm. Sup, Pisa (1979)Google Scholar
  4. 4.
    Balakrishna, B., Mahanthappa, K.: Composite gauge field models with broken symmetries. Phys. Rev. D 49, 2653–2657 (1994). doi:10.1103/PhysRevD.49.R2653 ADSCrossRefGoogle Scholar
  5. 5.
    Bars, I.: Quantized electric flux tubes in quantum chromodynamics. Phys. Rev. Lett. 40, 688–691 (1978)ADSCrossRefGoogle Scholar
  6. 6.
    Bars, I., Green, F.: Gauge invariant quantum variables in QCD. Nucl. Phys. B148, 445–460 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    Cahill, K.: Physical Mathematics. Cambridge University Press, Cambridge (2013). http://books.google.com/books?id=13YeX-SXkWYC. Accessed 1 Apr 2014
  8. 8.
    Cahill, K.: Some nonrenormalizable theories are finite. Phys. Rev. D 88, 125014 (2013). doi:10.1103/PhysRevD.88.125014 ADSCrossRefGoogle Scholar
  9. 9.
    Cahill, K.E.: The Fourth root of gravity (1993). http://arxiv.org/abs/gr-qc/9304014
  10. 10.
    Cahill, K.E., Herling, G.: Better actions. Nucl. Phys. Proc. Suppl. 53, 797–800 (1997). doi:10.1016/S0920-5632(96)00785-2 ADSCrossRefGoogle Scholar
  11. 11.
    Cahill, K.E., Raghavan, S.: Geometrical representations of gauge fields. J. Phys. A26, 7213–7217 (1993). doi:10.1088/0305-4470/26/23/054 ADSGoogle Scholar
  12. 12.
    Cho, J.H., Oh, P., Park, J.H.: Solitons in a grassmannian \(\sigma \) model coupled to a Chern–Simons term. Phys. Rev. D 66, 025022 (2002). doi: 10.1103/PhysRevD.66.025022 ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Corrigan, E.F., Fairlie, D.B., Templeton, S., Goddard, P.: A Green’s function for the general selfdual gauge field. Nucl. Phys. B140, 31 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    Din, A.M., Zakrzewski, W.J.: General classical solutions in the CP\(^{N-1}\) model. Nucl. Phys. B 174, 397–406 (1980). doi: 10.1016/0550-3213(80)90291-6 ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dubois-Violette, M., Georgelin, Y.: Gauge theory in terms of projector valued fields. Phys. Lett. B82, 251 (1979)ADSCrossRefGoogle Scholar
  16. 16.
    Eichenherr, H.: Invariant nonlinear sigma models. Nucl. Phys. B 146, 215–223 (1978). doi:10.1016/0550-3213(78)90439-X ADSCrossRefGoogle Scholar
  17. 17.
    Felsager, B., Leinaas, J.: Geometric interpretation of magnetic fields and the motion of charged particles. Nucl. Phys. B 166, 162 (1980). doi:10.1016/0550-3213(80)90497-6 ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Feynman, R.: The Character of Physical Law. Modern Library, New York (1994). http://books.google.com/books?id=j-49AQAAIAAJ
  19. 19.
    Freedman, D.Z., Haagensen, P.E., Johnson, K., Latorre, J.I.: The hidden spatial geometry of nonabelian gauge theories (1993). http://arxiv.org/abs/hep-th/9309045
  20. 20.
    Freedman, D.Z., Khuri, R.R.: Spatial geometry and the Wu–Yang ambiguity. In: Strings and Symmetries. Springer, Berlin (1994)Google Scholar
  21. 21.
    Gava, E., Jengo, R., Omero, C.: The O(5) nonlinear sigma model as a SU(2) gauge theory. Phys. Lett. B 81, 187 (1979). doi:10.1016/0370-2693(79)90520-3 ADSCrossRefGoogle Scholar
  22. 22.
    Gliozzi, F.: String-like topological excitations of the electromagnetic field. Nucl. Phys. B 141, 379–390 (1978). doi:10.1016/0550-3213(78)90033-0 ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Goldstone, J., Jackiw, R.: Unconstrained temporal gauge for Yang–Mills theory. Phys. Lett. B74, 81 (1978). doi:10.1016/0370-2693(78)90065-5 ADSCrossRefGoogle Scholar
  24. 24.
    Gron, O.: Classical kaluza klein description of the hydrogen atom. Il Nuovo Cimento 91B, 57–66 (1986)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    Gron, O.: Inertial dragging and Kaluza–Klein theory. Int. J. Mod. Phys. A20, 2270–2274 (2005). doi:10.1142/S0217751X05024481 ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Gron, O., Odegaard, P.: Kaluza Klein description of the electrical field due to an infinitely long, straight charged cylinder. Gen. Relat. Gravit. 26, 53–60 (1994)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    Grundland, A.M., Strasburger, A., Zakrzewski, W.J.: Surfaces immersed in \(\backslash \)su\(\{\)N+1\(\}\) Lie algebras obtained from the \(CP^{N}\) sigma models. J. Phys. A Math. Gen. 39, 9187–9213 (2006). doi: 10.1088/0305-4470/39/29/013 ADSCrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Haagensen, P.E., Johnson, K.: Yang–Mills fields and Riemannian geometry. Nucl. Phys. B439, 597–616 (1995). doi:10.1016/0550-3213(94)00464-P ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Haagensen, P.E., Johnson, K., Lam, C.: Gauge invariant geometric variables for Yang–Mills theory. Nucl. Phys. B477, 273–292 (1996). doi:10.1016/0550-3213(96)00362-8 ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Hussin, V., Yurduşen, I., Zakrzewski, W.J.: Canonical surfaces associated with projectors in Grassmannian sigma models. J. Math. Phys. 51(10), 103509 (2010). doi:10.1063/1.3486690 ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Kaluza, T.: Zum Unittsproblem in der Physik, pp. 966–972. Sitzungsber. Preuss. Akad. Wiss., Berlin (1921)Google Scholar
  32. 32.
    Klein, O.: Quantentheorie und fnfdimensionale Relativittstheorie. Z. Phys. A 37, 895–906 (1926)CrossRefMATHGoogle Scholar
  33. 33.
    Lunev, F.: Four-dimensional Yang–Mills theory in local gauge invariant variables. Mod. Phys. Lett. A9, 2281–2292 (1994). doi:10.1142/S0217732394002148 ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    Marsh, D.: The Grassmannian sigma model in SU(2) Yang–Mills theory. J. Phys. A40, 9919–9928 (2007). doi:10.1088/1751-8113/40/32/015 ADSMathSciNetGoogle Scholar
  35. 35.
    Narasimhan, M.S., Ramanan, S.: Existence of universal connections. Am. J. Math. 83(3), 563–572 (1961). http://www.jstor.org/stable/2372896. Accessed 1 Feb 2013
  36. 36.
    Narasimhan, M.S., Ramanan, S.: Existence of universal connections II. Am. J. Math. 85, 223–231 (1961)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)CrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    Niemi, A.J., Slizovskiy, S.: Four dimensional Yang–Mills theory, gauge invariant mass and fluctuating three branes. J. Phys. A43, 425402 (2010). doi:10.1088/1751-8113/43/42/425402 ADSMathSciNetGoogle Scholar
  39. 39.
    Palumbo, F.: Composite gauge fields in renormalizable models. Phys. Rev. D48, 1917–1920 (1993). doi:10.1103/PhysRevD.48.R1917 ADSGoogle Scholar
  40. 40.
    Salam, A., Strathdee, J.: On Kaluza–Klein theory. Ann. Phys. 141, 316–352 (1982). doi:10.1016/0003-4916(82)90291-3 ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    Schiappa, R.: Supersymmetric Yang–Mills theory and Riemannian geometry. Nucl. Phys. B517, 462–484 (1998). doi:10.1016/S0550-3213(98)00013-3 ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    Schuster, P., Jaffe, R.: Quantum mechanics on manifolds embedded in Euclidean space. Ann. Phys. 307, 132–143 (2003). doi:10.1016/S0003-4916(03)00080-0 ADSCrossRefMathSciNetMATHGoogle Scholar
  43. 43.
    Schwarz, A., Doughty, N.: Kaluza–Klein unification and the Fierz–Pauli weak field limit. Am. J. Phys. 60, 150–157 (1992). doi:10.1119/1.16935 ADSCrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    Serna, M., Cahill, K.E.: Riemannian gauge theory and charge quantization. JHEP 0310, 054 (2003)ADSCrossRefMathSciNetGoogle Scholar
  45. 45.
    Serna, M., Strafaccia, J., Zeringue, C.: The geometric origin of electric force. J. Phys. Conf. Ser. 24, 219–224 (2005). doi:10.1088/1742-6596/24/1/025 ADSCrossRefGoogle Scholar
  46. 46.
    Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167–2170 (1983). doi:10.1103/PhysRevLett.51.2167
  47. 47.
    Stoll, D.: An angle representation of QCD (1994)Google Scholar
  48. 48.
    Stoll, D.: The Hamiltonian formulation of QCD in terms of angle variables. Phys. Lett. B336, 524–528 (1994). doi:10.1016/0370-2693(94)90567-3 ADSCrossRefGoogle Scholar
  49. 49.
    Valtancoli, P.: Projectors for the fuzzy sphere. Mod. Phys. Lett. A16, 639–646 (2001)ADSCrossRefMathSciNetGoogle Scholar
  50. 50.
    Weinberg, S.: The Quantum Theory of Fields: Modern Applications, Volume 1 in Quantum Theory of Fields. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  51. 51.
    Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984). doi:10.1103/PhysRevLett.52.2111 ADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    Wu, T.T., Yang, C.N.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D12, 3845–3857 (1975). doi:10.1103/PhysRevD.12.3845 ADSGoogle Scholar
  53. 53.
    Zee, A.: Nonabelian gauge structure in nuclear quadrupole resonance. Phys. Rev. A 38, 1–6 (1988)ADSCrossRefMathSciNetMATHGoogle Scholar
  54. 54.
    Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton (2003)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA)  2014

Authors and Affiliations

  1. 1.Department of PhysicsUnited States Air Force AcademyUSAF AcademyUSA

Personalised recommendations