Foundations of Physics

, Volume 45, Issue 2, pp 105–133 | Cite as

Perspectives of the Numerical Order of Material Changes in Timeless Approaches in Physics

Article

Abstract

Wheeler–deWitt equation as well as some relevant current research (Chiou’s timeless path integral approach for relativistic quantum mechanics; Palmer’s view of a fundamental level of physical reality based on an Invariant Set Postulate; Girelli’s, Liberati’s and Sindoni’s toy model of a non-dynamical timeless space as fundamental background of physical events) suggest that at a fundamental level the background space of physics is timeless, that the duration of physical events has not a primary existence. By taking into consideration the two fundamental theories of time represented by the Jacobi-Barbour-Bertotti theory and by Rovelli’s approach, here it is shown that the view of time as emergent quantity measuring the numerical order of material changes (which can above all be derived from some significant current research, such as Elze’s approach of time, Caticha’s approach of entropic time and Prati’s model of physical clock time) introduces a suggestive unifying re-reading.

Keywords

Space Time Numerical order of material changes  General relativity Quantum mechanics Timeless approaches 

References

  1. 1.
    Mach, E.: Die Mechanik in ihrer Entwicklung historisch-kritsch dargestellt. Barth, Leipzig (1883). In: English Translation: The Science of Mechanics, Open Court, Chicago (1960)Google Scholar
  2. 2.
    Mittelstaedt, P.: Der Zeitbegriff in der Physik. B.I.-Wissenschaftsverlag, Mannheim (1976)Google Scholar
  3. 3.
    Yourgrau, P.: A World without Time: The Forgotten Legacy of Godel and Einstein. Basic Books, New York (2006). http://findarticles.com/p/articles/mi_m1200/is_8_167/ai_n13595656
  4. 4.
    Barbour, J.B., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. A 382(1783), 295–306 (1982)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Anderson, E., Barbour, J.B., Foster, B.Z., Kelleher, B. Murchadha, N.Ó.: “The physical gravitational degrees of freedom”. Class. Quantum Gravity 22, 1795–1802 (2005). e-print arXiv:gr-qc/0407104
  6. 6.
    Barbour, J.B., Foster, B.Z. Murchadha, N.Ó: “Relativity without relativity”. Class. Quantum Gravity 19, 3217–3248 (2002). e-print arXiv:gr-qc/0012089.
  7. 7.
    Anderson, E., Barbour, J.B., Foster, B., Murchadha, N.Ó.: “Scale-invariant gravity: Geometrodynamics”. Class. Quantum Gravity 20, 1543–1570 (2003). e-print arXiv:gr-qc/0211022
  8. 8.
    Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) In: Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 211–314. World Scientific, Singapore, (1992)Google Scholar
  9. 9.
    Anderson, E.: “Problem of time in quantum gravity”. Annalen der Physik 524(12), 757–786 (2012). e-print arXiv:1206.2403v2 [gr-qc] (2012)
  10. 10.
    DeWitt, B.S.: Quantum theory of gravity. 1. The canonical theory. Phys. Rev. 160(5), 1113–1148 (1967)ADSCrossRefMATHGoogle Scholar
  11. 11.
    Isham, C.J.: “Canonical quantum gravity and the problem of time”. arXiv:gr-qc/9210011v1 (1992)
  12. 12.
    Gambini, R., Pullin, J.: “Relational physics with real rods and clocks and the measurement problem of quantum mechanics”. Found. Phys. 37(7), 1074–1092 (2007). e-print arXiv:quant-ph/0608243
  13. 13.
    Gambini, R., Porto, R.A., Pullin, J.: “Lost of entanglement in quantum mechanics due to the use of realistic measuring rods”. Phys. Lett. A 372(8), 1213–1218 (2008). e-print arXiv:0708.2935 [quant-ph]
  14. 14.
    Gambini, R., Porto, R.A., Pullin, J.: “Fundamental decoherence from quantum gravity: a pedagogical review”. Gener. Relativ. Gravit. 39(8), 1143–1156 (2007). e-print arXiv:gr-qc/0603090
  15. 15.
    Gambini, R., Porto, R.A., Pullin, J.: “Free will, undecidability, and the problem of time in quantum gravity”. (2009) arXiv:0903.1859v1 [quant-ph]
  16. 16.
    Woodward, J.F.: Killing time. Found. Phys. Lett. 9(1), 1–23 (1996)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Barbour, J.B.: “The Nature of Time”. arXiv:0903.3489 (2009)
  18. 18.
    Chiou, D.-W.: “Timeless path integral for relativistic quantum mechanics”. Class. Quantum Gravity 30(12), 125004 (2013). e-print arXiv:1009.5436v3 [gr-qc] (2009)
  19. 19.
    Palmer, T.N.: “The invariant set hypothesis: a new geometric framework for the foundations of quantum theory and the role played by gravity”. arXiv:0812.1148 (2009)
  20. 20.
    Girelli, F., Liberati, S., Sindoni, L.: “Is the notion of time really fundamental?”. arXiv:0903.4876v1 [gr-qc] (2009)
  21. 21.
    Barbour, J.B.: The timelessness of quantum gravity. 1: The evidence from the classical theory. Class. Quantum Gravity 11, 2853–2873 (1994)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kiefer, C.: Quantum Gravity. Clarendon, Oxford (2004)MATHGoogle Scholar
  23. 23.
    Anderson, E.: “The problem of time and quantum cosmology in the relational particle mechanics arena”. (2011). arXiv:1111.1472
  24. 24.
    Barbour, J.B.: The End of Time: The Next Revolution in Physics. Oxford University Press, Oxford (2000)Google Scholar
  25. 25.
    Clements, G.M.: “Astronomical time”. Rev. Mod. Phys. 29(1), 2–8 (1957)Google Scholar
  26. 26.
    Gryb, S.: “Jacobi’s principle and the disappearance of time”. Phys. Rev. D 81, 044035 (2010). e-print arXiv: 0804.2900v3 [gr-qc]
  27. 27.
    Faddeev, L.D.: Feynman integral for singular Lagrangians. Theor. Math. Phys. 1(1), 1–13 (1969)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43(2), 442–456 (1991)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Rovelli, C.: Quantum mechanics without time: a model. Phys. Rev. D 42(8), 2638–2646 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    Rovelli, C.: Quantum evolving constants. Phys. Rev. D 44(4), 1339–1341 (1991)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Rovelli, C.: What is observable in classical and quantum gravity? Class. Quantum Gravity 8, 297–316 (1991)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    Rovelli, C.: Quantum reference systems. Class. Quantum Gravity 8, 317–331 (1991)ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Rovelli, C.: “Is there incompatibility between the ways time is treated in general relativity and in standard quantum mechanics?”. In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity. Birkhauser, New York (1991)Google Scholar
  34. 34.
    Rovelli, C.: Analysis of the different meaning of the concept of time in different physical theories. Il Nuovo Cimento B 110(1), 81–93 (1995)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    Rovelli, C.: “Partial observables”. Phys. Rev. D 65, 124013 (2002). e-print arXiv:gr-qc/0110035
  36. 36.
    Rovelli, C.: “A note on the foundation of relativistic mechanics. II: Covariant hamiltonian general relativity”. arXiv:gr-qc/0202079 (2002)
  37. 37.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  38. 38.
    Rovelli, C.: Statistical mechanics of gravity and thermodynamical origin of time. Classical and Quantum Gravity 10(8), 1549–1566 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Rovelli, C.: The statistical state of the universe. Class. Quantum Gravity 10(8), 1567–1578 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Rovelli, C.: “Forget time”. arXiv:0903.3832v3 [gr-qc] (2009)
  41. 41.
    Gózdz, A., Stefanska, K.: Projection evolution and delayed choice experiment. J. Phys. 104, 012007 (2008)Google Scholar
  42. 42.
    Sorli, A., Fiscaletti, D., Klinar, D.: Time is a reference system derived from light speed. Phys. Essays 23(2), 330–332 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Sorli, A., Fiscaletti, D., Klinar, D.: Replacing time with numerical order of material change resolves Zeno problems on motion. Phys. Essays 24(1), 11–15 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Elze, H.T.: “Quantum mechanics and discrete time from “timeless” classical dynamics”. Lect. Notes Phys. 633, 196 (2003). arXiv:gr-qc/0307014v1
  45. 45.
    Elze, H.T., Schipper, O.: Time without time: a stochastic clock model. Phys. Rev. D 66, 044020 (2002)ADSCrossRefMathSciNetGoogle Scholar
  46. 46.
    Elze, H.T.: Emergent discrete time and quantization: relativistic particle with extra dimensions. Phys. Lett. A 310(2–3), 110–118 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Caticha, A.: “Entropic dynamics, time and quantum theory”. J. Phys. A 44(22), 225303 (2011). e-print arXiv:1005.2357v3 [quant-ph]
  48. 48.
    Prati, E.: “The nature of time: from a timeless Hamiltonian framework to clock time of metrology”. (2009) arXiv:0907.1707v1 [physics.class-ph]
  49. 49.
    Anderson, E.: “Machian classical and semiclassical emergent time”. (2013) arXiv:1305.4685v2 [gr-qc]
  50. 50.
    Rovelli, C.: “Loop quantum gravity”. Living Rev. Relativ. 1(1), (1998). doi:10.12942/lrr-1998-1
  51. 51.
    Rovelli, C.: “A new look at loop quantum gravity”. Class. Quantum Gravity 28(11), 114005 (2011). e-print arXiv:1004.1780v1 [gr-qc]
  52. 52.
    Licata, I.: Minkowski space-time and dirac vacuum as ultrareferential reference frame. Hadron. J. 14, 3 (1991)MathSciNetGoogle Scholar
  53. 53.
    Sorli, A., Klinar, D., Fiscaletti, D.: New insights into the special theory of relativity. Phys. Essays 24, 2 (2011)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.SpaceLife Institute35–San Lorenzo in Campo (PU)Italy
  2. 2.Foundations of Physics Research CentreCelicoItaly

Personalised recommendations