Foundations of Physics

, Volume 44, Issue 11, pp 1195–1215 | Cite as

Contrary Inferences in Consistent Histories and a Set Selection Criterion

  • Petros Wallden


The best developed formulation of closed system quantum theory that handles multiple-time statements, is the consistent (or decoherent) histories approach. The most important weaknesses of the approach is that it gives rise to many different consistent sets, and it has been argued that a complete interpretation should be accompanied with a natural mechanism leading to a (possibly) unique preferred consistent set. The existence of multiple consistent sets becomes more problematic because it allows the existence of contrary inferences [1]. We analyse the conceptual difficulties that arise from the existence of multiple consistent sets and provide a suggestion for a natural set selection criterion. This criterion does not lead to a unique physical consistent set, however it evades the existence of consistent sets with contrary inferences. The criterion is based on the concept of preclusion and the requirement that probability one propositions and their inferences should be non-contextual. The allowed consistent sets turn-out to be compatible with coevents which are the ontology of an alternative, histories based, formulation [2, 3, 4].


Consistent histories Decoherent histories Contrary inferences 



This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) through Grant EP/K022717/1. Partial support from COST Action MP1006 is also gratefully acknowledged. The author is grateful to Robert Griffiths for his remarks concerning the conventional single-framework rule for consistent histories and to the anonymous reviewers for their constructive comments.


  1. 1.
    Kent, A.: Consistent Ssets yield contrary inferences in quantum theory. Phys. Rev. Lett. 78, 2874–2877 (1997)MathSciNetCrossRefzbMATHADSGoogle Scholar
  2. 2.
    Sorkin, R.D.: An exercise in “anhomomorphic logic”. J. Phys. Conf. Ser. 67, 012018 (2007)CrossRefADSGoogle Scholar
  3. 3.
    Sorkin, R.D.: Quantum dynamics without the wavefunction. J. Phys. A 40, 3207–3222 (2007)MathSciNetCrossRefzbMATHADSGoogle Scholar
  4. 4.
    Wallden, P.: The coevent formulation of quantum theory. J. Phys. Conf. Ser. 442, 012044 (2013)CrossRefADSGoogle Scholar
  5. 5.
    Dirac, P.A.M.: The Langrangian in quantum mechanics. Physikalische Zeitschrift der Sowjetunion 3, 64–72 (1933)Google Scholar
  6. 6.
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Griffiths, R.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)CrossRefzbMATHADSGoogle Scholar
  8. 8.
    Omnès, R.: Logical reformulation of quantum mechanics. I. Foundations. J. Stat. Phys. 53, 893–932 (1988)CrossRefzbMATHADSGoogle Scholar
  9. 9.
    Gell-Mann, M., Hartle, J.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W. (ed.) Complexity, Entropy and the Physics of Information, SFI Studies in the Science of Complexity, pp. 425–458. Addison-Wesley, Reading, Redwood City (1990)Google Scholar
  10. 10.
    Gell-Mann, M., Hartle, J.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Dowker, F., Kent, A.: Properties of consistent histories. Phys. Rev. Lett. 75, 3038 (1995)CrossRefADSGoogle Scholar
  12. 12.
    Dowker, F., Kent, A.: On the consistent histories approach to quantum mechanics. J. Stat. Phys. 82, 1575–1646 (1996)MathSciNetCrossRefzbMATHADSGoogle Scholar
  13. 13.
    Bassi, A., Ghirardi, G.: Decoherent histories and realism. J. Stat. Phys. 98, 457–494 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Okon, E., Sudarsky, D.: On the consistency of the consistent histories approach to quantum mechanics. Found. Phys. 44, 19–33 (2014)MathSciNetCrossRefzbMATHADSGoogle Scholar
  15. 15.
    Goldstein, S., Page, D.: Linearly positive histories: probabilities for a robust family of sequences of quantum events. Phys. Rev. Lett. 74, 3715–3719 (1995)MathSciNetCrossRefzbMATHADSGoogle Scholar
  16. 16.
    Hartle, J.: Linear positivity and virtual probability. Phys. Rev. Lett. A 70, 022104 (2004)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3128 (1994)MathSciNetCrossRefzbMATHADSGoogle Scholar
  18. 18.
    Sorkin, R.D.: Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Philadelphia, September 8–11, 1994, pp. 229-251. International Press, Cambridge Mass, 1997. In Feng, D.H. and Hu, B-L. (eds.) gr-qc/9507057
  19. 19.
    Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. Indiana Univ. Math. J. 6, 885–893 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Shimony, A.: Contextual hidden variables theories and bell’s inequalities. Br. J. Philos. Sci. 35, 25–45 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)Google Scholar
  23. 23.
    Gudder, S.: On hidden variable theories. J. Math. Phys. 11, 431–436 (1970)MathSciNetCrossRefzbMATHADSGoogle Scholar
  24. 24.
    Sorkin, R. D.: in G.F.R. Ellis, J. Murugan and A. Weltman (eds), Foundations of Space and Time (Cambridge University Press). preprint arxiv:1004.1226
  25. 25.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefzbMATHADSGoogle Scholar
  26. 26.
    Martin, X., O’Connor, D., Sorkin, R.: Random walk in generalized quantum theory. Phys. Rev. D 71, 024029 (2005)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Isham, C.: Topos theory and consistent histories: the internal logic of the set of all consistent sets. Int. J. Theor. Phys. 36, 785–814 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Flori, C.: preprint arXiv:0812.1290 (2008)
  29. 29.
    Anastopoulos, C.: On the selection of preferred consistent sets. Int. J. Theor. Phys. 37, 2261–2272 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gell-Mann, M., Hartle, J.: Quasiclassical coarse graining and thermodynamic entropy. Phys. Rev. A 76, 022104 (2007)CrossRefADSGoogle Scholar
  31. 31.
    Riedel, C.J., Zurek, W. and Zwolak, M.: preprint arXiv:1312.0331 (2013)
  32. 32.
    Kent, A.: Quantum histories and their implications. Lect. Notes Phys. 559, 93–115 (2000)CrossRefADSGoogle Scholar
  33. 33.
    Griffiths, R.B.: Choice of consistent family, and quantum incompatibility. Phys. Rev. A 57, 1604–1618 (1998)CrossRefADSGoogle Scholar
  34. 34.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  35. 35.
    Griffiths, R.B.: The new quantum logic. Found. Phys. 44, 610–640 (2014)MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Griffiths, R.B., Hartle, J.: Comment on “consistent sets yield contrary inferences in quantum theory”. Phys. Rev. Lett. 81, 1981 (1998)MathSciNetCrossRefzbMATHADSGoogle Scholar
  37. 37.
    Kent, A.: Kent replies. Phys. Rev. Lett. 81, 1982 (1998)MathSciNetCrossRefzbMATHADSGoogle Scholar
  38. 38.
    Dowker, F., Ghazi-Tabatabai, Y.: The Kochen-Specker theorem revisited in quantum measure theory. J. Phys. A 41, 105301 (2008)MathSciNetCrossRefADSGoogle Scholar
  39. 39.
    Surya, S., Wallden, P.: Quantum covers in quantum measure theory. Found. Phys. 40, 585–606 (2010)MathSciNetCrossRefzbMATHADSGoogle Scholar
  40. 40.
    Wallden, P.: Spacetime coarse grainings and the problem of time in the decoherent histories approach to quantum theory. Int. J. Theor. Phys. 47, 1512–1532 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Aharonov, Y., Vaidman, L.: Complete description of a quantum system at a given time. J. Phys. A 24, 2315–2328 (1991)MathSciNetCrossRefADSGoogle Scholar
  42. 42.
    Sorkin, R.: Does a quantum particle know its own energy? J. Phys. Conf. Ser. 442, 012014 (2013)CrossRefADSGoogle Scholar
  43. 43.
    Ghazi-Tabatabai, Y., Wallden, P.: Dynamics and predictions in the co-event interpretation. J. Phys. A Math. Theor. 42, 235303 (2009)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Dowker, F., Johnston, S., Sorkin, R.: Hilbert spaces from path integrals. J. Phys. A Math. Theor. 43, 275302 (2010)MathSciNetCrossRefADSGoogle Scholar
  45. 45.
    Dowker, F., Henson, J., Wallden, P.: A histories perspective on characterising quantum non-locality. New J. Phys. 16, 033033 (2014)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.SUPA, School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK
  2. 2.Physics DepartmentUniversity of AthensAthensGreece
  3. 3.LFCSSchool of Informatics, University of EdinburghEdinburghUK

Personalised recommendations