Foundations of Physics

, Volume 44, Issue 11, pp 1188–1194 | Cite as

Relativistic Fermi-Gas Model for Nucleus

Article

Abstract

Spin-half fermions are considered to be limited in a spherical potential well with periodic boundary conditions. The whole system is treated like a relativistic Fermi Gas. Solving the corresponding Dirac equation, the density of states, the Fermi energy, the average energy, the density of states of nucleons and the total energy of the ground-state are obtained.

Keywords

Relativistic Fermi-gas Dirac equation Fermi energy  Spherical potential well 

References

  1. 1.
    Greiner, W., Maruhn, J.A.: Nuclear Models. Springer, Berlin (1996)CrossRefMATHGoogle Scholar
  2. 2.
    Men, F.D., Liu, H.: The instability conditions of a weakly interacting Fermi gas trapped in weak magnetic field. Chin. Phys. 15, 2856–2860 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Suzuki, M., Suzuki, I.S.: Free electron Fermi gas model: specific heat and Pauli paramagnetism. In: Lecture Note on Solid State Physic Department of Physics, State University of New York at Binghamton, Binghamton, New York pp. 13902–6000 (2006, June 15).Google Scholar
  4. 4.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Rinehart and Winston, New York (1976). ISBN 0-03-083993-9.Google Scholar
  5. 5.
    Ginocchio, J.N.: Relativistic symmetries in nuclei and hadrons. Phys. Rep. 414, 165–261 (2005)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Ginocchio, J.N., Leviatan, A.: Relativistic Symmetry in Nuclei. Phys. Lett. B 425, 1–5 (1998)CrossRefADSGoogle Scholar
  7. 7.
    Ginocchio, J.N.: Pseudospin as a relativist symmetry. Phys. Rev. Lett 78(436), 436–439 (1997)CrossRefADSGoogle Scholar
  8. 8.
    Zhang, F.L., Fu, B., Chen, J.L.: Higgs algebraic symmetry in two-dimensional Dirac equation. Phys. Rev. A 80, 054102–4 (2009)CrossRefADSGoogle Scholar
  9. 9.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nature Mater. 6, 183–191 (2007)CrossRefADSGoogle Scholar
  10. 10.
    Bagchi, B., Ganguly, A.: A unified treatment of exactly solvable and quasi-exactly solvable quantum potentials. J. Phys A Math. Gen. 36, 161–167 (2003)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Alonso, V., De Vincenzo, S.: General boundary conditions for a Dirac particle in a box and their non-relativistic limits. J. Phys. A 30, 8573–8585 (1997)MathSciNetCrossRefMATHADSGoogle Scholar
  12. 12.
    Roy, S.M., Singh, V.: Fractional total-charge Eigenvalues for a fermion in a finite one-dimensional box. Phys. Lett B. 143, 179–182 (1984)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Rajaraman, R., Bell, J.S.: On solitons with half integral charge. Phys. Lett. 116, 151–154 (1982)CrossRefGoogle Scholar
  14. 14.
    Alhaidari, A.D.: Dirac particle in a square well and in a box. In: Proceedings of the Fifth Saudi Physical Society Conference (SPS5), A. Al-Hajry et al. (ed.), AIP Conference Proceedings, American Institute of Physics, Melville, New York, vol. 1370, pp. 21–25 (2011).Google Scholar
  15. 15.
    Springford, M.: Electrons at the Fermi Surface. Cambridge University Press, Cambridge (1980).Google Scholar
  16. 16.
    Ziman, J.: Electrons in Metals: A Short Guide to the Fermi Surface. Taylor & Francis, London (1964)Google Scholar
  17. 17.
    Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S.: Dirac equation with vector and scalar cornell potentials and an external magnetic field. Ann. Phys. 525(12), 944–950 (2013).Google Scholar
  18. 18.
    Alberto, P., Fiolhais, C., Gil, V.M.S.: Relativistic particle in a box. Eur. J. Phys. 17, 19–24 (1996)CrossRefGoogle Scholar
  19. 19.
    Zwerger, W.: The BCS-BEC Crossover and the Unitary Fermi Gas. Springer, Berlin (2011).Google Scholar
  20. 20.
    Wei, G.F., Dong, S.H.: Pseudospin symmetry in the relativistic Manning–Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term. Phys. Lett. B 686, 288–292 (2010)CrossRefADSGoogle Scholar
  21. 21.
    Maruhn, J.A., Reinhard, P.G., Suraud, E.: Simple Models of Many-Fermion Systems. Springer, Berlin (1977).Google Scholar
  22. 22.
    Greiner, W., Müller, B.: Quantum Mechanics. Symmetries, Springer, New York (1994)Google Scholar
  23. 23.
    Moniz, E.J.: Pion electroproduction from nuclei. Phys. Rev. 184, 1154–1161 (1969)CrossRefADSGoogle Scholar
  24. 24.
    Miller, G.A.: Fermi gas model. Nucl. Phys. B 112, 223–225 (2002). (Proc. Suppl.)CrossRefGoogle Scholar
  25. 25.
    Mengoli, A., Nakajima, Y.: Fermi-gas model parametrization of nuclear level density. J. Nucl. Sci. Tech. 31, 151–162 (1994)CrossRefGoogle Scholar
  26. 26.
    Meyerhof, W.E.: Elements of Nuclear Physics. McGraw-Hill, New York (1967)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physics DepartmentShahrood UniversityShahroodIran

Personalised recommendations