Foundations of Physics

, Volume 44, Issue 11, pp 1156–1167 | Cite as

Lorentz Invariant Berry Phase for a Perturbed Relativistic Four Dimensional Harmonic Oscillator

  • Yossi Bachar
  • Rafael I. Arshansky
  • Lawrence P. Horwitz
  • Igal Aharonovich
Article

Abstract

We show the existence of Lorentz invariant Berry phases generated, in the Stueckelberg–Horwitz–Piron manifestly covariant quantum theory (SHP), by a perturbed four dimensional harmonic oscillator. These phases are associated with a fractional perturbation of the azimuthal symmetry of the oscillator. They are computed numerically by using time independent perturbation theory and the definition of the Berry phase generalized to the framework of SHP relativistic quantum theory.

Keywords

Relativistic quantum mechanics Geometric phase  Stueckelberg theory Covariant 4D oscillator Induced representation 

References

  1. 1.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Lond. A392, 45–57 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    Maslov, V.P.: Théorie des perturbations et méthodes asymptotiques. Dunod, Paris 1972.Google Scholar
  3. 3.
    Kostant, B., Sternberg, S.: Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras. Ann. Phys. 176(1), 49–113 (1987)MathSciNetMATHADSCrossRefGoogle Scholar
  4. 4.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley, Hoboken, NJ (1972)Google Scholar
  5. 5.
    Stueckelberg, E.C.G.: Remarquea propos de la création de paires de particules en théorie de relativité. Helv. Phys. Acta 14(372), 588–594 (1941)MathSciNetGoogle Scholar
  6. 6.
    Leutwyler, H., Stern, J.: Relativistic dynamics on a null plane. Ann. Phys. 112, 94–164 (1978)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Kim, Y.S., Noz, M.E.: Covariant harmonic oscillators and excited baryon decays. Prog. Theor. Phys. 57(4), 1373–1386 (1977)Google Scholar
  8. 8.
    Horwitz, L.P., Piron, C.: Relativistic dynamics. Helv. Phys. Acta. 46, 316 (1973)Google Scholar
  9. 9.
    Arshansky, R., Horwitz, L.P.: The quantum relativistic two-body bound state I. The spectrum. J. Math. Phys. 30(1), 66–80 (1989)MathSciNetMATHADSCrossRefGoogle Scholar
  10. 10.
    Cook, J.L.: Solutions of the relativistic two-body problem II. Quantum mechanics. Aust. J. Phys 25(2), 141–166 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    Zmuidzinas, J.S.: Unitary representations of the Lorentz group on 4-vector manifolds. J. Math. Phys. 7(4), 764–780 (1966)MathSciNetMATHADSCrossRefGoogle Scholar
  12. 12.
    Griffiths, D.J.: Introduction to Quantum Mechanics. Benjamin Cummings, San Francisco (2004)Google Scholar
  13. 13.
    Arshansky, R., Horwitz, L.P.: The quantum relativistic two-body bound state II. The induced representation of SL(2, C). J. Math. Phys 30(2), 380–392 (1989)MathSciNetMATHADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yossi Bachar
    • 1
  • Rafael I. Arshansky
    • 2
  • Lawrence P. Horwitz
    • 1
    • 3
    • 4
  • Igal Aharonovich
    • 1
  1. 1.Department of PhysicsBar Ilan UniversityRamat GanIsrael
  2. 2.Givat ZorfatitJerusalemIsrael
  3. 3.School of Physics and AstronomyTel-Aviv UniversityTel AvivIsrael
  4. 4.Department of PhysicsAriel University in the ShomronArielIsrael

Personalised recommendations