Foundations of Physics

, Volume 44, Issue 11, pp 1125–1155 | Cite as

The Status of Determinism in Proofs of the Impossibility of a Noncontextual Model of Quantum Theory

Article

Abstract

In order to claim that one has experimentally tested whether a noncontextual ontological model could underlie certain measurement statistics in quantum theory, it is necessary to have a notion of noncontextuality that applies to unsharp measurements, i.e., those that can only be represented by positive operator-valued measures rather than projection-valued measures. This is because any realistic measurement necessarily has some nonvanishing amount of noise and therefore never achieves the ideal of sharpness. Assuming a generalized notion of noncontextuality that applies to arbitrary experimental procedures, it is shown that the outcome of a measurement depends deterministically on the ontic state of the system being measured if and only if the measurement is sharp. Hence for every unsharp measurement, its outcome necessarily has an indeterministic dependence on the ontic state. We defend this proposal against alternatives. In particular, we demonstrate why considerations parallel to Fine’s theorem do not challenge this conclusion.

Keywords

Quantum contextuality Kochen–Specker theorem Quantum foundations Positive operator valued measures Quantum measurement theory 

References

  1. 1.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966). (Reprinted in Ref. [3], chap. 1.)Google Scholar
  2. 2.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967)MathSciNetMATHGoogle Scholar
  3. 3.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, New York (1987)MATHGoogle Scholar
  4. 4.
    Cabello, A., Garcia-Alcaine, G.: Proposed experimental tests of the Bell-Kochen-Specker theorem. Phys. Rev. Lett. 80, 1797 (1998)CrossRefADSGoogle Scholar
  5. 5.
    Simon, C., Brukner, C., Zeilinger, A.: Hidden variable theorems for real experiments. Phys. Rev. Lett. 86, 4427–4430 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Larsson, J.-A.: A Kochen-Specker inequality. Europhys. Lett. 58, 799–805 (2002)CrossRefADSGoogle Scholar
  7. 7.
    Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71, 052108 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964). (Reprinted in Ref. [3], chap. 2.)Google Scholar
  9. 9.
    Busch, P.: Quantum states and generalized observables: a simple proof of Gleason’s theorem. Phys. Rev. Lett. 91, 120403 (2003)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Cabello, A.: Kochen-Specker theorem for a single Qubit using positive operator-valued measures. Phys. Rev. Lett. 90, 190401 (2003)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Caves, C.M., Fuchs, C.A., Manne, K., Renes, J.M.: Gleason-type derivations of the quantum probability rule for generalized measurements. Found. Phys. 34, 193 (2004)MathSciNetCrossRefMATHADSGoogle Scholar
  12. 12.
    Aravind, P.K.: The generalized Kochen-Specker theorem. Phys. Rev. A 68, 052104 (2003)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Methot, A.A.: Minimal Bell-Kochen-Specker proofs with POVMs on qubits. Int. J. Quantum Inf. 5, 353 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Zhang, Q., Li, H., Yang, T., Yin, J., Du, J., Pan, J.W.: Experimental test of the Kochen-Specker theorem for single qubits using positive operator-valued measures. arXiv:0412049v2 (2004)
  15. 15.
    Mancinska, L., Scarpa, G., Severini, S.: New separations in zero-error channel capacity through projective Kochen-Specker sets and quantum coloring. IEEE Trans. Inform. Theory 59, 4025 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48, 291 (1982)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Simon, C., Brukner, C., Zeilinger, A.: Hidden-variable theorems for real experiments. Phys. Rev. Lett. 86, 4427 (2001)CrossRefADSGoogle Scholar
  18. 18.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Boston (1995)MATHGoogle Scholar
  19. 19.
    Harrigan, N., Spekkens, R.W.: Einstein, incompleteness, and the epistemic view of quantum states. Found. Phys. 40, 125 (2010)MathSciNetCrossRefMATHADSGoogle Scholar
  20. 20.
    Spekkens, R.W.: The paradigm of kinematics and dynamics must yield to causal structure. arXiv:1209.0023 (2012)
  21. 21.
    Harrigan, N., Rudolph, T.: Ontological models and the interpretation of contextuality. arXiv:0709.4266 (2007)
  22. 22.
    Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665 (1993)MathSciNetCrossRefMATHADSGoogle Scholar
  23. 23.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bells theorem. In Bells theorem, quantum theory and conceptions of the universe (pp. 69–72). Springer, Netherlands (1989).Google Scholar
  24. 24.
    Spekkens, R.W., Buzacott, D.H., Keehn, A.J., Toner, B., Pryde, G.J.: Preparation contextuality powers parity-oblivious multiplexing. Phys. Rev. Lett. 102, 010401 (2009)CrossRefADSGoogle Scholar
  25. 25.
    Howard, M., Wallman, J., Veitch, V., Emerson, J.: Contextuality supplies the magic for quantum computation. Nature 510, 351 (2014)ADSGoogle Scholar
  26. 26.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction. Phys. Rev. A 86, 012103 (2012)CrossRefADSGoogle Scholar
  27. 27.
    Gross, D.: Hudsons theorem for finite-dimensional quantum systems. J. Math. Phys. 47, 122107 (2006)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Spekkens, R.W.: Negativity and contextuality are equivalent notions of nonclassicality. Phys. Rev. Lett. 101, 020401 (2008)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Grudka, A., Kurzynski, P.: Is there contextuality for a single qubit? Phys. Rev. Lett. 100, 160401 (2008)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Toner, B.F., Bacon, D., Ben-Or, M.: Kochen-Specker theorem for generalized measurements. Unpublished manuscript (2005).Google Scholar
  31. 31.
    Kunjwal, R., Ghosh, S.: A minimal state-dependent proof of measurement contextuality for a qubit. arXiv:1305.7009 (2013)
  32. 32.
    Liang, Y.C., Spekkens, R.W., Wiseman, H.M.: Specker’s parable of the overprotective seer: a road to contextuality, nonlocality and complementarity. Phys. Rep. 506, 1 (2011)MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Spekkens, R.W., Kunjwal, R.: In preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations