Foundations of Physics

, Volume 44, Issue 10, pp 1038–1048 | Cite as

Conway–Kochen and the Finite Precision Loophole

Article

Abstract

Recently Cator and Landsman made a comparison between Bell’s Theorem and Conway and Kochen’s Strong Free Will Theorem. Their overall conclusion was that the latter is stronger in that it uses fewer assumptions, but also that it has two shortcomings. Firstly, no experimental test of the Conway–Kochen Theorem has been performed thus far, and, secondly, because the Conway–Kochen Theorem is strongly connected to the Kochen–Specker Theorem it may be susceptible to the finite precision loophole of Meyer, Kent and Clifton. In this paper I show that the finite precision loophole does not apply to the Conway–Kochen Theorem.

Keywords

Conway–Kochen Theorem Kochen–Specker Theorem Finite precision loophole Noncontextuality Nonlocality 

References

  1. 1.
    Abbott, A.A., Calude, C.S., Svozil, K.: Strong Kochen–Specker theorem and incomputability of quantum randomness. Phys. Rev. A 89(3), 032109 (2014)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Abbott, A.A., et al.: Strong Kochen–Specker theorem and incomputability of quantum randomness. Phys. Rev. A 86(6), 062109 (2012)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Appleby, D.M.: The Bell–Kochen–Specker theorem. Stud. Hist. Philos. Mod. Phys. 36, 1–28 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Atkinson, D.: Bell’s inequalities and Kolmogorov’s axioms. Pramana 56(1–2), 139–152 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Barrett, L., Kent, A.: Non-contextuality, finite precision measurement and the Kochen–Specker theorem. Stud. Hist. Philos. Mod. Phys. 35, 151–176 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1(3), 195–200 (1964)Google Scholar
  7. 7.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3) (1966), Reprinted in [8], pp. 447–452Google Scholar
  8. 8.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)MATHGoogle Scholar
  9. 9.
    Bengtsson, I.: Gleason, Kochen–Specker, and a competition that never was. AIP Conf. Proc. 1508(1), 125–135 (2012)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Brown, H.R., Svetlichny, G.: Nonlocality and Gleason’s lemma. Part 1. Deterministic theories. Found. Phys. 20(11), 1379–1387 (1990)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Bub, J.: Schütte’s tautology and the Kochen–Specker theorem. Found. Phys. 26(6), 787–806 (1996)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Cabello, Adán: Finite-precision measurement does not nullify the Kochen–Specker theorem. Phys. Rev. A 65(5), 052101 (2002)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Cator, E., Landsman, N.P.: Constraints on determinism: Bell versus Conway–Kochen. arXiv preprint. quant-ph/1402.1972 (2014)
  14. 14.
    Clauser, J.F., et al.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)CrossRefADSGoogle Scholar
  15. 15.
    Clifton, R.: Getting contextual and nonlocal elements of reality the easy way. Am. J. Phys. 61(5), 443–447 (1993)CrossRefADSGoogle Scholar
  16. 16.
    Clifton, R., Kent, A.: Simulating quantum mechanics by non-contextual hidden variables. Proc. Math. Phys. Eng. Sci. 456(2001), 2101–2114 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Conway, J.H., Kochen, S.: The free will theorem. Found. Phys. 36(10), 1441–1473 (2006)MathSciNetCrossRefMATHADSGoogle Scholar
  18. 18.
    Conway, J.H., Kochen, S.: The strong free will theorem. Not. AMS 56(2), 226–232 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48(5), 291–295 (1982)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Fine, A.: Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 23, 1306–1310 (1982)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Goldstein, S., et al.: What does the free will theorem actually prove? Not. AMS 57, 1451–1453 (2010)MATHGoogle Scholar
  22. 22.
    Griffiths, R.B.: Hilbert space quantum mechanics is noncontextual. Stud. Hist. Philos. Sci. B 44(3), 174–181 (2013)MathSciNetMATHGoogle Scholar
  23. 23.
    Held, C.: The Kochen–Specker Theorem. The Stanford Encyclopedia of Philosophy. Zalta, E. N. (ed). Spring 2013 (2013)Google Scholar
  24. 24.
    Hermens, R.: Quantum mechanics: from realism to intuitionism. arXiv preprint. quant-ph/1002.1410 (2010)
  25. 25.
    Hermens, R.: The problem of contextuality and the impossibility of experimental meta-physics thereof. Stud. Hist. Philos. Sci. B 42(4), 214–225 (2011)MathSciNetMATHGoogle Scholar
  26. 26.
    Heywood, P., Redhead, M.L.G.: Nonlocality and the Kochen–Specker paradox. Found. Phys. 13(5), 481–499 (1983)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Hooker, C.A. (ed.): The Logico-Algebraic Approach to Quantum Mechanics Volume I. D. Reidel, Dordrecht (1975)Google Scholar
  28. 28.
    Jones, R.T., Adelberger, E.G.: Quantum mechanics and Bell’s inequalities. Phys. Rev. Lett. 72(17), 2675–2677 (1994)MathSciNetCrossRefMATHADSGoogle Scholar
  29. 29.
    Kent, A.: Noncontextual hidden variables and physical measurements. Phys. Rev. Lett. 83(19), 3755–3757 (1999)MathSciNetCrossRefMATHADSGoogle Scholar
  30. 30.
    Khrennikov, A.: Nonlocality as well as rejection of realism are only sufficient (but non-necessary!) conditions for violation of Bell’s inequality. Inf. Sci. 179, 492–504 (2009)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Kochen, S., Specker, E. P: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–67 (1967). Reprinted in [27], pp. 293–328Google Scholar
  32. 32.
    Lisoněk, P., et al.: Kochen–Specker set with seven contexts. Phys. Rev. A 89(4), 042101 (2014)CrossRefADSGoogle Scholar
  33. 33.
    Meyer, D.A.: Finite precision measurement nullifies the Kochen–Specker theorem. Phys. Rev. Lett. 83(19), 3751–3754 (1999)MathSciNetCrossRefMATHADSGoogle Scholar
  34. 34.
    Pavičić, M., et al.: Kochen–Specker vectors. J. Phys. A 38(7), 1577–1592 (2005)MathSciNetCrossRefMATHADSGoogle Scholar
  35. 35.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, New York (2002)Google Scholar
  36. 36.
    Santos, E.: Does quantum mechanics violate the Bell inequalities? Phys. Rev. Lett. 66(11), 1388–1390 (1991)CrossRefADSGoogle Scholar
  37. 37.
    Shimony, A.: Contextual hidden variables theories and Bell’s inequalities. Br. J. Philos. Sci. 35(1), 25–45 (1984)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Smolin, L.: Three Roads to Quantum Gravity. Weidenfeld & Nicolson, London (2000)Google Scholar
  39. 39.
    Stairs, A.: Quantum logic, realism, and value definiteness. Philos. Sci. 50, 578–602 (1983)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Svetlichny, G., et al.: Do the Bell inequalities require the existence of joint probability distributions? Philos. Sci. 55(3), 387–401 (1988)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wigner, E.P.: Die Messung quantenmechanischer Operatoren. Z. Phys. 133, 101–108 (1952)MathSciNetCrossRefMATHADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Theoretical PhilosophyUniversity of GroningenGroningenNetherlands

Personalised recommendations