Foundations of Physics

, Volume 44, Issue 10, pp 1009–1037 | Cite as

Quantum Measures on Finite Effect Algebras with the Riesz Decomposition Properties

  • Aili Yang
  • Yongjian Xie


One kind of generalized measures called quantum measures on finite effect algebras, which fulfil the grade-2 additive sum rule, is considered. One basis of vector space of quantum measures on a finite effect algebra with the Riesz decomposition property (RDP for short) is given. It is proved that any diagonally positive symmetric signed measure \(\lambda \) on the tensor product \(E\otimes E\) can determine a quantum measure \(\mu \) on a finite effect algebra \(E\) with the RDP such that \(\mu (x)=\lambda (x\otimes x)\) for any \(x\in E\). Furthermore, some conditions for a grade-2 additive measure \(\mu \) on a finite effect algebra \(E\) are provided to guarantee that there exists a unique diagonally positive symmetric signed measure \(\lambda \) on \(E\otimes E\) such that \(\mu (x)=\lambda (x\otimes x)\) for any \(x\in E\). At last, it is showed that any grade-\(t\) quantum measure on a finite effect algebra \(E\) with the RDP is essentially established by the values on a subset of \(E\).


Quantum interference Effect algebra Quantum measure Tensor product 



The authors are grateful to the anonymous referees who suggest us to note and compare the research for the fuzzy measures in [11, 26] with the research for quantum measures. The authors are indebted to the anonymous referees’ kindly comments to improve the readability of our manuscript. The authors also would like to thank Pulumannová for the useful discussions regarding the history theories. This work is partially supported by National Science Foundation of China (Grant Nos. 11201279, 11271237, 61273311 and 61373150), a research grant from Education Department of Shaanxi Province (No. 12JK0875).


  1. 1.
    Bauer, H.: Measure and Integration Theory. Walter de Gruyter, Berlin (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. Second Ser. 37, 823–834 (1936)CrossRefGoogle Scholar
  3. 3.
    Combarro, E.F., Miranda, P.: On the structure of the \(k\)-additive fuzzy measures. Fuzzy Sets Syst. 161, 2314–2327 (2010)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Dvurečenskij, A.: Tensor product of difference posets and effect algebras. Int. J. Theor. Phys. 34, 1337–1348 (1995)CrossRefMATHGoogle Scholar
  5. 5.
    Dvurečenskij, A.: Tensor product of difference posets. Trans. Am. Math. Soc. 347, 1043–1057 (1995)CrossRefMATHGoogle Scholar
  6. 6.
    Dvurečenskij, A., Pulmannová, S.: D-test spaces and difference posets. Rep. Math. Phys. 34, 151–170 (1994)CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava (2000)CrossRefMATHGoogle Scholar
  8. 8.
    Dvurečenskij, A., Chovanec, F., Rybáriková, E.: D-hommorphisms and atomic \(\sigma \)-complete Boolean D-posets. Soft Comput. 4, 9–18 (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Foulis, D., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Grabisch, M.: k-Order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92, 167–189 (1997)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)CrossRefMATHADSGoogle Scholar
  13. 13.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  14. 14.
    Gudder, S.: A histories approach to quantum mechanics. J. Math. Phys. 39, 5772–5788 (1998)CrossRefMATHADSMathSciNetGoogle Scholar
  15. 15.
    Gudder, S.: Morphisms, tensor products and \(\sigma \)-effect algebras. Rep. Math. Phys. 42, 321–346 (1998)CrossRefMATHADSMathSciNetGoogle Scholar
  16. 16.
    Gudder, S.: Quantum measure and integration theory. J. Math. Phys. 50, 123509 (2009)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Gudder, S.: Finite quantum measure spaces. Am. Math. Mon. 117, 512–527 (2010)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Gudder, S.: Quantum measure theory. Math. Slovaca 60, 681–700 (2010)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Gudder, S.: An anhomomorphic logic for quantum mechanics. J. Phys. A 43, 095302 (2010)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Gudder, S.: Quantum integrals and anhomomorphic logics. J. Math. Phys. 51, 112101 (2010)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Gudder, S.: Quantum measures and the coevent interpretation. Rep. Math. Phys. 67, 681–700 (2011)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Isham, C.: Quantum logic and the histories approach to quantum theory. J. Math. Phys. 35, 2157–2185 (1994)CrossRefMATHADSMathSciNetGoogle Scholar
  23. 23.
    Jenča, G., Pulmannová, S.: Orthocomplete effect algebras. Proc. Am. Math. Soc. 131, 2663–2671 (2003)CrossRefMATHGoogle Scholar
  24. 24.
    Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983)MATHGoogle Scholar
  25. 25.
    Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994)MATHMathSciNetGoogle Scholar
  26. 26.
    Mesiar, R.: k-Order additive measures. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6, 561–568 (1999)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Mesiar, R.: Generlizations of k-order additive discrete measures. Fuzzy Sets Syst. 102, 423–428 (1999)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Pulmannová, S.: Difference posets and the histories approach to quantum theories. Int. J. Theor. Phys. 34, 189–210 (1995)CrossRefMATHGoogle Scholar
  29. 29.
    Salgado, R.: Some identities for the quantum measure and its generalizations. Mod. Phys. Lett. A 17, 711–728 (2002)CrossRefMATHADSMathSciNetGoogle Scholar
  30. 30.
    Sorkin, R.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3127 (1994)CrossRefMATHADSMathSciNetGoogle Scholar
  31. 31.
    Sorkin, R.: Quantum mechanics without the wave function. J. Phys. A 40, 3207–3231 (2007)CrossRefMATHADSMathSciNetGoogle Scholar
  32. 32.
    Surya, S., Wallden, P.: Quantum covers in quantum measure theory. Found. Phys. 40, 585–606 (2010)CrossRefMATHADSMathSciNetGoogle Scholar
  33. 33.
    Xie, Y., Yang, A., Ren, F.: Super quantum measures on finite spaces. Found. Phys. 43, 1039–1065 (2013)CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of ScienceXi’an University of Science and TechnologyXi’anChina
  2. 2.College of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations