Foundations of Physics

, Volume 44, Issue 9, pp 990–1008 | Cite as

On Clifford Space Relativity, Black Hole Entropy, Rainbow Metrics, Generalized Dispersion and Uncertainty Relations

Article

Abstract

An analysis of some of the applications of Clifford space relativity to the physics behind the modified black hole entropy-area relations, rainbow metrics, generalized dispersion and minimal length stringy uncertainty relations is presented.

Keywords

Clifford algebras Extended relativity in Clifford spaces String theory Doubly special relativity Rainbow metrics Black hole entropy Noncommutative geometry  Quantum Clifford–Hopf algebras 

References

  1. 1.
    Castro, C., Pavsic, M.: The extended relativity theory in Clifford-spaces. Prog. Phys. 1, 31–64 (2005)MATHMathSciNetGoogle Scholar
  2. 2.
    Castro, C.: The extended relativity theory in Clifford phase spaces and modifications of gravity at the Planck/Hubble scales. Adv. Appl. Clifford Algebras 24, 29–53 (2013)Google Scholar
  3. 3.
    Castro, C.: Novel physical consequences of the extended relativity in Clifford spaces, to appear in Adv. Appl. Clifford Algebras. arXiv:1401.0237
  4. 4.
    Castro, C.: Why a minimal length follows from the extended relativity principle in Clifford spaces, submitted to Mod. Phys. A Lett.Google Scholar
  5. 5.
    Castro, C.: The many novel physical consequences of Born’s reciprocal relativity in phase spaces. Int. J. Mod. Phys. A 26, 3653–3678 (2011)ADSMATHGoogle Scholar
  6. 6.
    Castro, C.: On Born’s deformed reciprocal complex gravitational theory and noncommutative gravity. Phys. Lett. B 668, 442–446 (2008)ADSMathSciNetGoogle Scholar
  7. 7.
    Castro, C.: Born’s reciprocal gravity in curved phase-spaces and the cosmological constant. Found. Phys. 42, 1031–1055 (2012)ADSMATHMathSciNetGoogle Scholar
  8. 8.
    Castro, C.: Superluminal particles and the extended relativity theories. Found. Phys. 42, 1135–1152 (2012)ADSMATHMathSciNetGoogle Scholar
  9. 9.
    Born, M.: A suggestion for unifying quantum theory and relativity. Proc. R. Soc. Lond. A 165, 291–303 (1938)ADSGoogle Scholar
  10. 10.
    Born, M.: Reciprocity theory of elementary particles. Rev. Mod. Phys. 21, 463–473 (1949)ADSMATHGoogle Scholar
  11. 11.
    Caianiello, E.: Is there a maximal acceleration? Lett. Nuovo Cimento 32, 65 (1981)MathSciNetGoogle Scholar
  12. 12.
    Low, S.: Representations of the canonical group, (the semi-direct product of the unitary and Weyl–Heisenberg groups), acting as a dynamical group on noncommuting extended phase space. J. Phys. A 35, 5711–5730 (2002)ADSMATHMathSciNetGoogle Scholar
  13. 13.
    Jarvis, P., Morgan, S.: Born reciprocity and the granularity of space–time. Found. Phys. Lett. 19, 501–517 (2006)MATHMathSciNetGoogle Scholar
  14. 14.
    Amelino-Camelia, G.: Quantum-gravity phenomenology: status and prospects. Mod. Phys. Lett. A17, 899–922 (2002)ADSMathSciNetGoogle Scholar
  15. 15.
    Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: The principle of relative locality. arXiv:1101.0931 (2011)
  16. 16.
    Freidel, L., Smolin, L.: Gamma ray burst delay times probe the geometry of momentum space. arXiv:1103.5626 (2011)
  17. 17.
    Pavsic, M.: Clifford space as the arena for physics. Found. Phys. 33, 1277–1306 (2003)MathSciNetGoogle Scholar
  18. 18.
    Pavsic, M.: The Landscape of Theoretical Physics: A Global View, from Point Particles to the Brane World and Beyond, in Search of a Unifying Principle. Fundamental Theories of Physics, vol. 19. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  19. 19.
    Castro, C.: The stringy uncertainty relations follow from the new relativity principle. Found. Phys. 30, 1301–1316 (2000)MathSciNetGoogle Scholar
  20. 20.
    Castro, C.: The minimal length stringy uncertainty relations follow from Clifford space relativity, submitted to Phys. Lett. B (2014)Google Scholar
  21. 21.
    Magueijo, J., Smolin, L.: Gravity’s rainbow. Class. Quantum Gravity 21, 1725–1736 (2004)ADSMATHMathSciNetGoogle Scholar
  22. 22.
    Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V.: Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity. Int. J. Mod. Phys. A 12, 607–624 (1997)ADSMATHMathSciNetGoogle Scholar
  23. 23.
    Girelli, F., Liberati, S., Sindoni, L.: Planck-scale modfied dispersion relations and Finsler geometry. Phys. Rev. D75, 064015 (2007)ADSMathSciNetGoogle Scholar
  24. 24.
    Kempf, A., Mangano, G.: Minimal length uncertainty relation and ultraviolet regularisation. Phys. Rev. D 55, 7909–7920 (1997)ADSGoogle Scholar
  25. 25.
    Gross, D., Mende, P.: The high-energy behavior of string scattering amplitudes. Phys. Lett. B 197, 129–134 (1987)ADSMathSciNetGoogle Scholar
  26. 26.
    Amati, D., Ciafaloni, M., Veneziano, G.: Superstring collisions at Planckian energies. Phys. Lett. B 197, 81–88 (1987)ADSGoogle Scholar
  27. 27.
    Vacaru, S.: Finsler branes and quantum gravity phenomenology with Lorentz symmetry violations. Class. Quantum Gravity 28, 215991 (2011)MathSciNetGoogle Scholar
  28. 28.
    Vacaru, S.: Spectral functionals, nonholonomic Dirac operators, and noncommutative Ricci flows. J. Math. Phys. 50, 073503 (2009)ADSMathSciNetGoogle Scholar
  29. 29.
    Vacaru, S., Stavrinos, P., Gaburov, E., Gonta, D.: Clifford and Riemann–Finsler Structures in Geometric Mechanics and Gravity. Differential Geometry and Dynamical Systems, Monograph, vol. 7. Geometry Balkan Press, Bucharest (2006)Google Scholar
  30. 30.
    Ali, A.: Black hole remnant from gravity’s rainbow. arXiv:1402.5320 (2014)
  31. 31.
    Gim, Y., Kim, W.: Thermodynamic phase transition in the rainbow Schwarzschild black hole. arXiv:1406.6475 (2014)
  32. 32.
    Adler, R., Chen, P., Santiago, D.: The generalized uncertainty principle and black hole remnants. Gen. Relativ. Gravit. 33, 2101–2108 (2001)ADSMATHMathSciNetGoogle Scholar
  33. 33.
    Das, S., Vagenas, E.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)ADSGoogle Scholar
  34. 34.
    Dutta, A., Gangopadhyay, S.: Remnant mass and entropy of black holes and modified uncertainty principle. arXiv:1402.2133 (2014)
  35. 35.
    Scardigli, F., Casadio, R.: Gravitational tests of the generalized uncertainty principle. arXiv:1407.0113 (2014)
  36. 36.
    Nottale, L.: Scale Relativity and Fractal Space–Time: A New Approach to Unifying Relativity and Quantum Mechanics. World Scientific Publishing Company, Singapore (2011)Google Scholar
  37. 37.
    Nottale, L.: Fractal Space–Time and Micro-physics. Scale Relativity. World Scientific Publishing Company, Singapore. http://en.wikipedia.org/wiki/Laurent-Nottale (1993)
  38. 38.
    Lukierski, J., Nowicki, A., Ruegg, H., Tolstoy, V.: \(q\)-Deformation of Poincaré algebra. Phys. Lett. B 264, 331–338 (1991)ADSMathSciNetGoogle Scholar
  39. 39.
    Lukierski, J., Ruegg, H., Zakrzewski, W.: Classical and quantum mechanics of free \(\kappa \)-relativistic systems. Ann. Phys. 243, 90–116 (1995)ADSMATHMathSciNetGoogle Scholar
  40. 40.
    Majid, S., Ruegg, H.: Bicrossproduct structure of \(\kappa \)-Poincare group and non-commutative geometry. Phys. Lett. B 334, 348–354 (1994)ADSMATHMathSciNetGoogle Scholar
  41. 41.
    da Rocha, R., Bernardini, A.E., Vaz Jr, J.: \(\kappa \)-Deformed Poincaré algebras and quantum Clifford–Hopf algebras. Int. J. Geom. Methods Mod. Phys. 7, 821–836 (2010)MATHMathSciNetGoogle Scholar
  42. 42.
    Fauser, B.: A Treatise on quantum Clifford algebras. Habilitationsschrift, Universität Konstanz, pp. 1–164. math/0202059 (2002)
  43. 43.
    Achieri, P., Dimitrijevic, M., Meyer, F., Wess, J.: Noncommutative geometry and gravity. Class. Quantum Gravity 23, 1883–1912 (2006)ADSGoogle Scholar
  44. 44.
    Castro, C.: On N-ary algebras, branes and polyvector valued gauge theories in noncommutative Clifford spaces. J. Phys. A 43, 365201 (2010)ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Center for Theoretical Studies of Physical SystemsClark Atlanta UniversityAtlantaUSA

Personalised recommendations